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Kurzfassung / Abstract
Precise knowledge of the longest sensitizable paths in a circuit is crucial for various tasks in computer-aided design, including
timing analysis, performance optimization, delay testing, and speed binning. As delays in today’s nanoscale technologies are
increasingly affected by statistical parameter variations, there is significant interest in obtaining sets of paths that are within a
length range. We present an ASP-based method for computing well-defined sets of sensitizable paths within a length range.
Unlike previous approaches, the method is accurate and does not rely on a priori relaxations. Experimental results demonstrate
the applicability and scalability of our method.

1 Introduction

Precise knowledge of the longest sensitizable paths in a cir-
cuit is crucial for various tasks in computer-aided design,
including timing analysis, performance optimization, delay
testing, and speed binning. However, the delays of individu-
al gates in today’s nanoscale technologies are increasingly
affected by statistical parameter variations [1]. As a conse-
quence, the longest sensitizable paths in a circuit depend on
the random distribution of circuit features [2] and are thus
subject to change in different circuit instances. For this rea-
son, there is significant interest in obtaining sets of sensitizab-
le paths that are within a length range, in contrast to only the
longest nominal path as in classical small delay testing [3].
Among other applications, such path sets can be used in the
emerging areas of Post-silicon validation and characterizati-
on [4] and Adaptive Test [5].

While structural paths can be easily extracted from a circuit
architecture, many of them are not sensitizable and therefore
present false paths [6]. The usage of such false paths leads
to overly pessimistic and inaccurate results. Therefore, de-
termination of path sensitization is required for high-quality
results, although it constitutes a challenging task that requires
complex path propagation and sensitization rules.

In order to reduce the algorithmic overhead, various methods
for the computation of sensitizable paths make use of relaxati-
ons [7], making trade-offs between complexity and accuracy.
Methods based on the sensitization of structural paths [8],
[9] restrict the number of paths they consider for accelera-
ting the computation and to limit memory usage. Due to these
restrictions, however, they may miss long paths. Recent me-
thods [10], [11] based on Boolean Satisfiability (SAT; [12])
have shown good performance results but are limited in the
precision of the encoded delay values. As their scaling criti-
cally depends on delay resolution, such methods are hardly
applicable when high accuracy is required.

We present an exact method for obtaining longest sensitiz-
able paths, using Answer Set Programming (ASP; [13]) to

encode the problem. ASP has become a popular approach to
declarative problem solving in the field of Knowledge Repre-
sentation and Reasoning (KRR). Unlike SAT, ASP provides
a rich modeling language as well as a stringent semantics,
which allows for succinct representations of encodings.

The remainder of the paper is structured as follows. Section
2 provides our ASP encoding of sensitizable paths. The ex-
perimental results of our encoding are presented in Section
3 and Section 4 concludes the paper.

2 ASP Encoding

The basic idea of ASP is to represent a given problem by
a logic program 1 such that particular models, called answer
sets, correspond to solutions, and then to use an ASP solver
for finding answer sets. While ASP’s input language is in-
spired by Logic Programming and thus allows for specifying
first-order logical rules, the computation of answer sets relies
on instantiation (or grounding) followed by Boolean Cons-
traint Solving. The model-oriented approach of ASP shares
similarities with PB/SAT-based problem solving; for instance,
Kautz and Selman [14] pioneered SAT planning by devising
propositional theories such that models (not proofs) descri-
be solutions, and logic programs whose answer sets represent
plans were provided by Lifschitz [15]. An important advanta-
ge of ASP in comparison to PB/SAT lies in its more stringent
notation of modelhood, requiring any true atom to be “con-
structible” by applying the rules of a logic program. This
constructive flavor allows for more succinct representations
of inductive concepts like closures, fixpoints, and reachability
than in PB/SAT. 2

1In view of ASP’s quest for declarativeness, the term program
is of course a misnomer but historically too well established to be
dropped.

2Under common assumptions in complexity theory, any
vocabulary-preserving translation from ASP to SAT must be
worst-case exponential [16], while there are linear-size as well as
modular translations from SAT to ASP.



Figure 1 Example circuit for computation of longest sensitizable
paths.

in(a). nand(g1). wire(a,g1,2,1). out(g3).
in(b). nand(g2). wire(b,g1,2,1). test(g3).
in(c). nand(g3). wire(c,g2,2,1).

wire(g1,g3,2,1).
wire(g2,g3,2,1).

Figure 2 ASP instance describing the circuit in Figure 1 by facts.

For a pragmatic introduction to ASP, we outline its applica-
tion for finding the longest sensitizable path through the gate
g3 in the circuit presented by Figure 1. The numbers on the
gate inputs represent the delay caused by a rising / falling
edge, respectively. The first step in solving this problem con-
sists of describing the circuit in terms of facts, yielding the
ASP instance (i.e., a logic program consisting solely of facts)
in Figure 2. Observe that the representation of the circuit by
an associated ASP instance is straightforward:

in(g). for each primary input g.
nand(g). for each nand gate g.
out(g). for each output gate g.
test(g). for the test gate g.
wire(g1,g2,r,f). for wireing between g1 and g2.

Thus, the facts nand(g1), nand(g3), and
wire(g1,g3,2,1) stands for the wiring from the
nand-gate g1 to the gate g3 with a delay of 2 (1) in the
case of a rising (falling) edge on the corresponding input
pin of gate g3. The second and more sophisticated step is
to specify logical rules such that answer sets satisfying them
match problem solutions. Our rules describing the problem
of finding the longest satisfiable path (for arbitrary instances)
are shown in in Figure 3; such an instance-independent logic
program part is called an ASP encoding.

Given that gate delays are only required for path length ma-
ximization, but not for the actual path calculation, the rule in
Line 1 projects instances of wire(G1,G2,R,F) (given by
facts) to wired gates G1 and G2. The calculation of a path
through the test gate G (in our example g3) is implemented
by the Lines 3 to 5. It starts in Line 3 by choosing exactly
one output gate, represented by an instance of path(G2).
In Line 4 the path is continued backwards including exactly
one predecessor gate for every non-input gate already on the
path. Given this, the so-called integrity constraint in Line 5
(the omitted left-hand side of the implication expressed by
“:-” refers to an implicitly false consequence) denies answer
sets, such that the path does not include the test gate G (he-
re g3). Also note that, although path calculation is logically
encoded backwards, ASP solving engines are not obliged to
proceed in any such order upon searching for answer sets.

The truth assignments needed for checking whether a path
at hand is sensitizable are generated by the rules in Line 7

to 10. To this this end, for each input gate G1 of the circuit
(in(G1) hold), choice rules allow for guessing truth values.
For example, the atoms one(a) and two(a) express whe-
ther the input a is true in the first and the second time frame
respectively. Given the values guessed for the inputs (a, b
and c), the NAND gates (g1, g2 and g3) are evaluated ac-
cordingly. The rules in Line 12 and 13 check whether the
gate G has a rising (falling) flank, i.e. is sensitizab-
le. Finaly, the integrity constraint in Line 14 stipulates that
each gate on the calculated path must be either falling or
rising, thus denying truth assignments whose transition does
not propagate along the whole path. In order to calculate the
longest sensitizable paths, the rules in Line 16 and 17 derives
the delay incurred by two gates G1 and G2 connected along
the path in respect of their flank (falling or rising). The main
objective of calculating the longest paths is expressed by the
#maximize statement in Line 18, which instructs ASP sol-
ving engines to compute answer sets such that the sum of
associated gate delays is as large as possible.

One longest path through the toy example of Figure 1 found
by our ASP model is path(c), path(g2), path(g3)
with falling(c), rising(g2) and falling(g3).

3 Experimental Results
We evaluate our method on ISCAS85 and the combinatori-
al cores of ISCAS89 benchmark circuits, given as gate-level
net lists. Path lengths are based on a pin-to-pin delay model
with support for different rising-falling delays. The individu-
al values have been derived from the Nangate 45nm Open
Cell Library [17]. Below, we report sequential runtimes of
the ASP solver clasp (version 2.0.4) on a Linux machine
equipped with 3.07GHz Intel i7 CPUs and 16GB RAM.

The ASP instance describing the circuit and our generic en-
coding are grounded by gringo. The grounding serves as in-
put for clasp, which in its first run performs optimization to
identify a longest sensitizable path with maximum delay dg .
With dg at hand, we further proceed to compute all paths
with a delay equal or greater than r = 0.95 ∗ dg . This is ac-
complished by reinvoking clasp with the command-line pa-
rameters --opt-all=r and --project to enumerate all
sensitizable paths within the range [r, dg]. While the first pa-
rameter informs clasp about the threshold r for sensitizable
paths to enumerate, the second is used to omit repetitions of
the same path with different truth assignments. As a conse-
quence, clasp enumerates distinct sensitizable paths, whose
delay are at least r, without repetitions. An overlaying python
program reuses the information of dg and paths found in pre-
vious iterations to decide whether subsequent gates need to
be analysed and ensures that clasp does not need to calculate
the same paths for different gates.

Table 2 displays the runtimes of our method using a length-
preserving mapping (avoiding rounding errors) of real-valued
gate delays to integers. “Circuit” and “Gates” indicate a par-
ticular benchmark circuit along with its number of gates to be
tested. The next three columns give statistics for the search
for longest sensitizable paths, displaying the average runtime
per solver call, the sum of runtimes for all gates in seconds
and the number of solver calls needed to calculate dg for all
gates. The three columns below “Path set” provide statistics
for the enumeration of distinct sensitizable paths with a length



1 wire(G1,G2) :- wire(G1,G2,R,F).

3 1 { path(G2) : out(G2) } 1.
4 1 { path(G1) : wire(G1,G2) } 1 :- path(G2), not in(G2).
5 :- test(G), not path(G).

7 { one(G1) } :- in(G1).
8 one(G2) :- nand(G2), wire(G1,G2), not one(G1).
9 { two(G1) } :- in(G1).

10 two(G2) :- nand(G2), wire(G1,G2), not two(G1).

12 falling(G) :- one(G), not two(G).
13 rising(G) :- two(G), not one(G).
14 :- path(G), not 1[falling(G), rising(G)].

16 delay(G1,G2,D) :- path(G1), path(G2), wire(G1,G2,R,D), falling(G1).
17 delay(G1,G2,D) :- path(G1), path(G2), wire(G1,G2,D,F), rising(G1).
18 #maximize[ delay(G1,G2,D) = D].

Figure 3 ASP encoding of the longest sensitizable paths problem.

of at least r. Here, we show the average runtime for enumera-
ting 1000 paths, the sum of runtimes for all gates, and finally
the total number of different paths found. The columns be-
low “Total” summarize both computation phases of clasp,
optimization and enumeration. The first column present the
total number clasp was called. Finally, the last two columns
provide the total solving time of clasp for both computation
passes and the total runtime needed for the benchmark.

As can be seen in Table 2, the scaling of our method is pri-
marily dominated by the number of gates in circuits. Over
all circuits, the average runtime for processing one test gate
is rather low and often within fractions of a second. In addi-
tion, our method allows for enumerating the complete set of
sensitizable paths within a given range in a single solver call,
thus avoiding any expenses due to rerunning our solver. This
allows us to enumerate thousands of sensitizable paths and
test pattern pairs sensitizing them very efficiently. In fact, the
overhead of path set computation compared to optimization
in the first phase is relatively small, even for complex circuits.
E.g., for the c3540 circuit, 2.26 seconds are on average requi-
red for optimization, and 10.42 seconds on average per 1000
enumerated paths. The rather large discrepancy between sol-
ving and total runtime for large, computational easy circuits,
e.g. cs13207, is explained by the fact that clasp currently
needs to read the grounded file from the disc for every call.
To overcome this bottleneck we hope to utilize oclingo, an
incremental ASP system implemented on top of gringo and
clasp, in future work as soon as oclingo supports #maximize

statements. This would allow us to analyze all gates of a cir-
cuit within a single solver call, thus drastically reducing the
disc access. In addition, the oclingo could reuse information
gained from previously processed gates for solving successi-
ve gates, efficiently.

In order to demonstrate the scaling of our approach wrt de-
lay accuracy, we also used different mappings of real-valued
delays to integers, and corresponding runtime results for the
ISCAS85 benchmark set as shown in Table 1. In addition
to the exact mode used in the previous experiment, we em-
ployed a rounding method to five delay values, shown in the
columns labeled with “5”. Likewise, we applied rounding to
1000 delay values. As before, we report average runtimes per
call in seconds for the two phases of optimizing sensitizable
path length and of performing enumeration. Considering the
results, we observe that runtimes of clasp are almost unin-
fluenced by the precision of gate delays. This is explained
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Figure 4 Comparison with PHAETON [10] using ISCAS85 circuits

by the fact that weights used in #minimize or #maximize

statements do influence the space of answer sets wrt to which
optimization and enumeration are applied. In the ISCAS89
benchmark set the solving time per call was almost univer-
sally less than 0.01s.

We compared our method with an SAT-based approach called
“PHAETON” proposed in [10]. The results are shown in Fi-
gure 4. The Figure shows the runtime needed by PHAETON
to compute 1000 paths for ISCAS85 benchmark circuits with
different levels of accuracy indicated by the number of delay
steps k. In order to compare the results of the proposed me-
thod with PHAETON, the runtime is given as percent on the
primary x-axis, with 100% being our method. The secondary
x-axis gives the discretization error of PHAETON. As can
be seen, for low accuracy levels which result in an average
discretization error of around 5%, PHAETON scales better
than our optimal approach. However, for increased accura-
cy levels, the proposed method outperforms PHAETON and
is therefore better suited for precise computation of longest
sensitizable paths.

4 Conclusions

We presented a method for the accurate computation of sen-
sitizable paths based on a flexible and compact encoding in
ASP. Unlike previous methods, our approach does not rely on
a priori relaxations and is therefore exact. We demonstrated
the applicability and scalability of our method by extensive
experiments on ISCAS85 and ISCAS89 benchmark circuits.

Future work includes further efforts to optimize the ASP en-
coding by incorporating additional rules, with the goal of



Circuit Gates Longest path (dg) Path set (95%) Total

Time in s Time in s Calls Time in s Time in s Paths Solver Solving Time Total time
per call per 1000 paths calls in s in s

* < 220 < 0.01 < 0.01 < 70 < 0.01 < 0.01 < 310 < 210 < 0.01 < 3.20
c0432 160 0.05 2.46 53 0.24 4.67 19356 112 7.13 11.67
c0499 202 0.01 0.64 64 0.49 0.94 1928 160 1.58 5.54
c0880 383 < 0.01 0.33 82 0.21 0.77 3617 212 1.10 7.78
c1355 546 0.29 18.87 64 1.36 32.54 23936 160 51.41 63.60
c1908 880 0.25 34.37 137 2.00 64.33 32174 378 98.70 131.22
c2670 1269 0.01 5.30 440 1.41 8.05 5700 1023 13.35 101.79
c3540 1669 2.26 544.32 241 10.42 1125.60 107994 697 1669.92 1799.69
c5315 2307 0.05 25.43 485 2.02 39.65 19603 1206 65.08 266.83
c7552 3513 0.04 24.59 576 1.97 40.77 20745 1622 65.36 444.07
cs00526 194 < 0.01 < 0.01 74 < 0.01 < 0.01 247 190 < 0.01 2.17
cs00641 379 < 0.01 0.01 68 0.06 0.02 326 236 0.03 5.74
cs00713 393 < 0.01 0.01 84 0.06 0.02 309 276 0.03 5.20
cs00820 289 < 0.01 0.02 71 < 0.01 < 0.01 361 273 0.02 5.36
cs00832 287 < 0.01 0.02 73 < 0.01 < 0.01 372 269 0.02 5.02
cs00838 446 < 0.01 0.05 140 0.18 0.15 853 444 0.20 12.31
cs00953 418 < 0.01 0.01 111 0.03 0.01 342 354 0.02 7.48
cs01196 530 < 0.01 0.39 145 0.62 0.34 550 417 0.73 14.90
cs01238 509 < 0.01 0.54 144 0.72 0.42 586 400 0.96 13.39
cs01423 657 < 0.01 1.51 184 0.87 1.94 2236 529 3.45 25.05
cs01488 653 < 0.01 0.02 155 0.02 0.01 517 676 0.03 22.10
cs01494 647 < 0.01 0.02 157 0.02 0.01 521 654 0.03 21.69
cs05378 2779 < 0.01 0.65 506 0.32 1.71 5334 1759 2.36 320.37
cs09234 5597 < 0.01 6.82 795 0.69 13.54 19703 3483 20.36 1091.54
cs13207 8027 0.02 27.15 1332 2.97 53.41 18011 5864 80.56 2833.38
cs15850 9786 0.66 973.07 1480 9.56 3172.45 331964 6322 4145.52 9825.64
cs35932 16353 < 0.01 0.06 5321 0.41 5.9 14321 13463 5.96 16437.94
cs38584 19407 < 0.01 33.23 7266 2.35 65.18 27722 20227 98.41 42700.61
* This includes the circuits c0017, c0095, cs00027, cs00208, cs00298, cs00344, cs00349, cs00382, cs00386, cs00400, cs00420, cs00444, cs00510.

Table 2 Application using exact delay values

Circuit Time (dg) per call Time (95%) per call

5 1000 exact 5 1000 exact

c0017 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
c0095 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
c0432 0.04 0.05 0.05 0.07 0.08 0.08
c0499 0.01 0.01 0.01 0.01 0.01 0.01
c0880 < 0.01 0.01 < 0.01 0.01 0.01 0.01
c1355 0.13 0.22 0.29 0.15 0.21 0.34
c1908 0.20 0.31 0.25 0.20 0.47 0.27
c2670 0.01 0.01 0.01 0.01 0.02 0.01
c3540 2.24 2.55 2.26 2.50 2.63 2.47
c5315 0.04 0.06 0.05 0.04 0.08 0.05
c7552 0.04 0.05 0.04 0.04 0.07 0.04

Table 1 Delay accuracy comparison

reducing the search space and helping clasp to discard unsa-
tisfactory sensitizable paths faster. Another way to improve
runtime is to specialize clasp’s search strategy to the problem
of calculating (longest) sensitizable paths.
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