
Answer Set Programming Made Easy

Jorge Fandinno, Seemran Mishra, Javier Romero, and Torsten Schaub

University of Potsdam, Germany

Abstract. We take up an idea from the folklore of Answer Set Programming,
namely that choices, integrity constraints along with a restricted rule format is
sufficient for Answer Set Programming. We elaborate upon the foundations of this
idea in the context of the logic of Here-and-There and show how it can be derived
from the logical principle of extension by definition. We then provide an austere
form of logic programs that may serve as a normalform for logic programs similar
to conjunctive normalform in classical logic. Finally, we take the key ideas and
propose a modeling methodology for ASP beginners and illustrate how it can be
used.

1 Introduction

Many people like Answer Set Programming (ASP [18]) because its declarative approach
frees them from expressing any procedural information. In ASP, neither the order of
rules nor the order of conditions in rule antecedents or consequents matter and thus
leave the meaning of the overall program unaffected. Although this freedom is usually
highly appreciated by ASP experts, sometimes laypersons seem to get lost without any
structural guidance when modeling in ASP.

We address this issue in this (preliminary) paper and develop a methodology for
ASP modeling that targets laypersons, such as biologists, economists, engineers, and
alike. As a starting point, we explore an idea put forward by Ilkka Niemelä in [23],
although already present in [9, 15] as well as the neighboring area of Abductive Logic
Programming [8, 7]. To illustrate it, consider the logic program encoding a Hamiltonian
circuit problem in Listing 1.1. Following good practice in ASP, the problem is separated

1 node(1..4). start(1).
2 edge(1,2). edge(2,3). edge(2,4). edge(3,1).
3 edge(3,4). edge(4,1). edge(4,3).
4
5 { hc(V,U) } :- edge(V,U).
6 reached(V) :- hc(S,V), start(S).
7 reached(V) :- reached(U), hc(U,V).
8 :- node(V), not reached(V).
9 :- hc(V,U), hc(V,W), U!=W.

10 :- hc(U,V), hc(W,V), U!=W.

Listing 1.1. A logic program for a Hamiltonian circuit problem

2 Jorge Fandinno, Seemran Mishra, Javier Romero, and Torsten Schaub

into the specification of the problem instance in lines 1-3 and the problem class in
lines 5-10. This strict separation, together with the use of facts for problem instances,
allows us to produce uniform1 and elaboration tolerant2 specifications. Building upon
the facts of the problem instance, the actual encoding follows the guess-define-check
methodology of ASP. A solution candidate is guessed in Line 5, analyzed by auxiliary
definitions in Line 6 and 7, and finally checked through integrity constraints in lines 8-10.

A closer look reveals even more structure in this example. From a global perspec-
tive, we observe that the program is partitioned into facts, choices, rules, and integrity
constraints, and in this order. From a local perspective, we note moreover that the predi-
cates in all rule antecedents are defined beforehand. This structure is not arbitrary and
simply follows the common practice that concept formation is done linearly by building
concepts on top of each other. Moreover, it conveys an intuition on how a solution is
formed. Importantly, such an arrangement of rules is purely methodological and has no
impact on the meaning (nor the performance3) of the overall program. From a logical
perspective, it is interesting to observe that the encoding refrains from using negation
explicitly, except for the integrity constraints. Rather this is hidden in Line 5, where the
choice on hc(V,U) amounts to the disjunction hc(V,U)∨¬hc(V,U), an instance
of the law of the excluded middle. Alternatively, hc(V,U) can also be regarded as an
abducible that may or may not be added to a program, as common in Abductive Logic
Programming.

Presumably motivated by similar observations, Ilkka Niemelä already argued in [23]
in favor of an ASP base language based on choices, integrity constraints, and stratified
negation.4 We also have been using such an approach when initiating students to ASP
as well as teaching laypersons. Our experience has so far been quite positive and we
believe that a simple and more structured approach helps to get acquainted to posing
constraints in a declarative setting.

We elaborate upon this idea in complementary ways. First of all, we lift it to a logical
level to investigate its foundations and identify its scope. Second, we want to draw on this
to determine a syntactically restricted subclass of logic programs that still warrants the
full expressiveness of traditional ASP. Such a subclass can be regarded as a normalform
for logic programs in ASP. This is also interesting from a research perspective since it
allows scientists to initially develop their theories in a restricted setting without regarding
all corner-cases emerging in a full-featured setting. And last but not least, inspired by
this, we want to put forward a simple and more structured modeling methodology for
ASP that aims at beginners and laypersons.

1 A problem encoding is uniform, if it can be used to solve all its problem instances.
2 A formalism is elaboration tolerant if it is convenient to modify a set of facts expressed in the

formalism to take into account new phenomena or changed circumstances [22].
3 Shuffling rules in logic programs has an effect on performance since it affects tie-breaking

during search; this is however unrelated to the ordering at hand.
4 This concept eliminates the (problematic) case of recursion through negation.

Answer Set Programming Made Easy 3

2 Background

We start by defining the monotonic logic of Here-and-There (HT). Let A be a set of
atoms. A formula ϕ over A is an expression built with the grammar:

ϕ ::= a | ⊥ | ϕ ∧ ϕ | ϕ ∨ ϕ | ϕ→ ϕ

for any atom a ∈ A. We also use the abbreviations: ¬ϕ def= (ϕ → ⊥), > def= ¬⊥, and
ϕ↔ ψ def= (ϕ→ ψ)∧ (ψ → ϕ). Given formulas ϕ, α and β, we write ϕ[α/β] to denote
the uniform substitution of all occurrences of formula α in ϕ by β. This generalizes to
the replacement of multiple formulas in the obvious way. As usual, a theory over A is a
set of formulas over A. We sometimes understand finite theories as the conjunction of
their formulas.

An interpretation over A is a pair 〈H,T 〉 of atoms (standing for “here” and “there”,
respectively) satisfying H ⊆ T ⊆ A. An interpretation is total whenever H = T .
An interpretation 〈H,T 〉 satisfies a formula ϕ, written 〈H,T 〉 |= ϕ, if the following
conditions hold:

〈H,T 〉 |= p if p ∈ H
〈H,T 〉 |= ϕ ∧ ψ if 〈H,T 〉 |= ϕ and 〈H,T 〉 |= ψ
〈H,T 〉 |= ϕ ∨ ψ if 〈H,T 〉 |= ϕ or 〈H,T 〉 |= ψ
〈H,T 〉 |= ϕ→ψ if 〈H ′, T 〉 6|= ϕ or 〈H ′, T 〉 |= ψ for both H ′ ∈ {H,T}

A formula ϕ is valid, written |= ϕ, if it is satisfied by all interpretations. An interpretation
〈H,T 〉 is a model of a theory Γ , written 〈H,T 〉 |= Γ , if 〈H,T 〉 |= ϕ for all ϕ ∈ Γ .

Classical entailment is obtained via the restriction to total models. Hence, we define
the classical satisfaction of a formula ϕ by an interpretation T , written T |= ϕ, as
〈T, T 〉 |= ϕ.

A total interpretation 〈T, T 〉 is an equilibrium model of a theory Γ if 〈T, T 〉 is a
model of Γ and there is no other model 〈H,T 〉 of Γ with H ⊂ T . In that case, we also
say that T is an stable model of Γ . We denote the set of all stable models of Γ by SM [Γ]
and use SM V [Γ] def= {T ∩ V | T ∈ SM [Γ] } for their projection onto some vocabulary
V ⊆ A.

Given two theories Γ and Π and a set V ⊆ A of atoms, we say that Γ and Π
are V -strongly equivalent [2], written Γ ∼=V Π , if SM V [Γ ∪∆] = SM V [Π ∪∆] for
any theory ∆ over A′ such that A′ ⊆ V . For formulas ϕ and ψ, we write ϕ ∼=V ψ if
{ϕ} ∼=V {ψ}.

A rule is a (reversed) implication of the form

l1 ∨ · · · ∨ lm ← lm+1 ∧ · · · ∧ ln (1)

where each li is a literal, that is, either an atom or a negated atom, for 1 ≤ i ≤ n. If
n = 1, we refer to the rule as a fact and write it as l1 by dropping the trailing implication
symbol. A rule is said to be normal whenever m = 1 and l1 is an atom. A negation-
free normal rule is called definite. An integrity constraint is a rule with m = 0 and
equivalent to ⊥ ← lm+1 ∧ · · · ∧ ln. Finally, the law of the excluded middle a ∨ ¬a is
often represented as {a} and called a choice. Accordingly, a rule with a choice on the

4 Jorge Fandinno, Seemran Mishra, Javier Romero, and Torsten Schaub

left-hand side is called a choice rule. A logic program is a set of rules. It is called normal,
if it consists only of normal rules and integrity constraints, and definite if all its rules are
definite.

3 Logical foundations

We begin by investigating the logical underpinnings of the simple format of logic
programs discussed in the introductory section. To this end, we resort to the base
logics of ASP, namely, the logic of Here-and-There (HT), along with its non-monotonic
extension, Equilibrium Logic. Although the discussion of the exemplary logic program
has revealed several characteristic properties, not all of them can be captured in a logical
setting, such as order related features. What remains is the division of the encoding into
facts, rules, choices, and integrity constraints. In logical terms, the first two amount to
negation-free formulas, choices are instances of the law of the excluded middle, and
finally integrity constraints correspond to double-negated formulas in HT. While the
first two types of formulas are arguably simpler because of their restricted syntax, the
latter’s simplicity has a semantic nature and is due to the fact that in HT double negated
formulas can be treated as in classical logic.

In what follows, we show that any formula can be divided into a conjunction of cor-
responding subformulas. This conjunction is strongly equivalent to the original formula
and the translation can thus also be applied to substitute subformulas. Interestingly, the
resulting conjunction amounts to a conservative extension of the original formula and
the underlying translation can be traced back to the logical principle of extension by
definition, as we show below.

To this end, we associate with each formula ϕ over A a new propositional atom
xϕ. We then consider defining axioms of the form (xϕ ↔ ϕ). We can now show that
replacing any subformula ϕ by xϕ while adding a corresponding defining axiom amounts
to a conservative extension of ψ.

Proposition 1. Let ψ and ϕ be formulas over A and xϕ 6∈ A.
Then, ψ ∼=A (ψ[ϕ/xϕ] ∧ (ϕ↔ xϕ)).

Moreover, we get a one-to-one correspondence between the stable models of both
formulas.

Proposition 2. Let ψ and ϕ be formulas over A and xϕ 6∈ A.

1. If T ⊆ A is a stable model of ψ, then T ∪ {xϕ | T |= ϕ} is a stable model of
(ψ[ϕ/xϕ] ∧ (ϕ↔ xϕ)).

2. If T ⊆ (A ∪ {xϕ}) is a stable model of (ψ[ϕ/xϕ] ∧ (ϕ ↔ xϕ)), then T ∩ A is a
stable model of ψ.

Clearly, the above results generalize from replacing and defining a single subformula ϕ
to several such subformulas.

With this, we can now turn our attention to negated subformulas: Given a formula
ψ, let N (ψ) stand for the set of all maximal negated subformulas occurring in ψ. This
leads us to the following variant of Proposition 1.

Answer Set Programming Made Easy 5

Corollary 1. Let ψ be a formula over A and xϕ 6∈ A.
Then, ψ ∼=A ψ

[
ϕ/xϕ | ϕ ∈ N (ψ)

]
∧
∧
ϕ∈N (ψ)(ϕ↔ xϕ).

Given that we exclusively substitute negated subformulas, we can actually treat the
defining axiom as in classical logic. This is because in HT, we have that 〈H,T 〉 |= ¬ϕ iff
(classically) T |= ¬ϕ. The classical treatment of the defining axiom is then accomplished
by replacing (ϕ↔ xϕ) by ¬¬(ϕ↔ xϕ) and (¬xϕ ∨ xϕ). This results in the following
decomposition recipe for formulas.

Definition 1. Let ψ be a formula over A and xϕ 6∈ A.
Then, we define

ψ? = ψ
[
ϕ/xϕ | ϕ ∈ N (ψ)

]
∧

∧
ϕ∈N (ψ)

(¬xϕ ∨ xϕ) ∧
∧

ϕ∈N (ψ)

¬¬(ϕ↔ xϕ) .

Example 1. Let ψ be ¬a→ b ∨ ¬¬(c ∧ ¬d). Then,

N (ψ) = {¬a,¬¬(c ∧ ¬d)}
ψ? = (x¬a → b ∨ x¬¬(c∧¬d)) ∧

(x¬a ∨ ¬x¬a) ∧ (x¬¬(c∧¬d) ∨ ¬x¬¬(c∧¬d))
¬¬(¬a↔ x¬a) ∧ ¬¬(¬¬(c ∧ ¬d)↔ x¬¬(c∧¬d))

With the translation from Definition 1, we obtain an analogous conservative extension
result as above.

Theorem 1. Let ψ be a formula over A.
Then, we have ψ ∼=A ψ?.

In analogy to Proposition 2, we get a one-to-one correspondence between the stable
models of both formulas.

Theorem 2. Let ψ be a formula over A.

1. If T ⊆ A is a stable model of ψ, then T ∪ {xϕ | ϕ ∈ N (ψ) and T |= ϕ} is a stable
model of ψ?.

2. If T ⊆ (A ∪ {xϕ | ϕ ∈ N (ψ)}) is a stable model of ψ?, then T ∩ A is a stable
model of ψ.

For instance, {b} is a stable model of the formula ψ = ¬a → b ∨ ¬¬(c ∧ ¬d) from
Example 1. From Theorem 1, {x¬a, b} is a stable model of ψ?. Conversely, from the
stable model {x¬a, b} of ψ?, we get the stable model {b} of ψ by dropping the new
atoms.

4 Austere answer set programming

In this section, we restrict the application of our formula translation to logic programs.
Although we focus on normal programs, a similar development with other classes of
logic programs, like disjunctive ones, can be done accordingly.

For simplicity, we write ā instead of x¬a for a ∈ A and let {ā} stand for ā ∨ ¬ā.
Note that, for a rule r as in (1), the set N (r) consists of negative literals only. The next
two definitions specialize our translation of formulas to logic programs.

6 Jorge Fandinno, Seemran Mishra, Javier Romero, and Torsten Schaub

Definition 2. Let r be a rule over A as in (1) with m ≥ 1.
Then, we define

r? = r
[
¬a/ā | ¬a ∈ N (r)] ∪

⋃
¬a∈N (r) {{ā} ←} ∪

⋃
¬a∈N (r)

{
← a ∧ ā
←¬a ∧ ¬ā

}
Definition 3. Let P be a logic program over A. Then, P ? =

⋃
r∈P r

?.

This translation substitutes negated literals in rule bodies with fresh atoms and adds a
choice rule along with a pair of integrity constraints providing an equivalence between
the eliminated negated body literals and the substituted atoms.

By applying the above results in the setting of logic programs, we get that a logic
program and its translation have the same stable models when restricted to the original
vocabulary.

Corollary 2. Let P be a logic program over A.
Then, we have P ∼=A P ?

In other words, every stable model of a logic program can be extended to a stable model
of its translation and vice versa.

Corollary 3. Let P be a logic program over A.

1. If T ⊆ A is a stable model of P , then T ∪ {ā | ¬a ∈ N (P) and a 6∈ T} is a stable
model of P ?.

2. T ⊆ (A ∪ {ā | ¬a ∈ N (P)} is a stable model of P ?, then T ∩ A is a stable model
of P .

For illustration, consider the following example.

Example 2. Consider the normal logic program P :

a←
b← ¬c
c← ¬b
d← a ∧ ¬c

Then, P ? is:
a← {b̄} ← {c̄} ←
b← c̄ ← b ∧ b̄ ← c ∧ c̄
c← b̄ ← ¬b ∧ ¬b̄ ← ¬c ∧ ¬c̄
d← a ∧ c̄

The stable models of P are {a, b, d} and {a, c} and the ones of P ? are {a, b, d, c̄} and
{a, c, b̄}, respectively.

The example underlines that our translation maps normal rules to definite ones along
with choices and pairs of integrity constraints. In other words, it can be seen as a means
for expressing normal logic programs in the form of programs with facts, definite rules,
choice rules and integrity constraints over an extended vocabulary. We call this class of
programs austere logic programs, and further elaborate upon them in the following.

Answer Set Programming Made Easy 7

4.1 Austere logic programs

We define austere logic programs according to the decomposition put forward in the
introduction.

Definition 4 (Austere logic program). An austere logic program is a quadruple (F,C,D, I)
consisting of a set F of facts, a set C of choices,5 a set D of definite rules, and a set I of
integrity constraints.

A set of atoms is a stable model of an austere logic program, if it is a stable model of the
union of all four components.

In view of the above results, austere logic programs can be regarded as a normalform
for normal logic programs.

Corollary 4. Every normal logic program can be expressed as an austere logic program
and vice versa.

The converse follows from the fact that choice rules are expressible by a pair of normal
rules [24].

In fact, the (instantiation of) Listing 1.1 constitutes an austere logic program. To see
this observe that

– lines 1-3 provide facts, F , capturing the problem instance, here giving the specifica-
tion of a graph;

– Line 5 provides choices, C, whose instantiation is derived from facts in the previous
lines. Grounding expands this rule to several plain choice rules with empty bodies;

– lines 5-6 list definite rules, D, defining (auxiliary) predicates used in the integrity
constraints;

– finally, integrity constraints, I , are given in lines 7-9, stating conditions that solutions
must satisfy.

This example nicely illustrates a distinguishing feature of austere logic programs,
namely, the compartmentalization of the program parts underlying ASP’s guess-define-
check encoding methodology (along with its strict separation of instance and encoding):
The problem instance is described by means of

– the facts in F

and the problem encoding confines

– non-deterministic choices to C,
– the deterministic extension of the taken decisions to D, and
– the test of the obtained extension to I .

This separation also confines the sources of multiple or non-existing stable models
to well-defined locations, namely, C and I , respectively (rather than spreading them
over several circular rules; see below). As well, the rather restricted syntax of each
compartment gives rise to a very simple operational semantics of austere logic programs,
as we see in the next section.

5 That is, choice rules without body literals.

8 Jorge Fandinno, Seemran Mishra, Javier Romero, and Torsten Schaub

4.2 Operational Semantics

In our experience, a major factor behind the popularity of the approach sketched in the
introductory section lies in the possibility to intuitively form stable models along the order
of the rules in a program. In fact, the simple nature of austere logic programs provides
a straightforward scheme for computing stable models by means of the well-known
immediate consequence operator, whose iteration mimics this proceeding. Moreover,
the simplicity of the computation provides first evidence of the value of austere logic
programs as a normalform.

The operational semantics of austere logic programs follows ASP’s guess-define-
check methodology. In fact, the only non-determinism in austere logic programs is
comprised in choice rules. Hence, once choices are made, we may adapt well-known
deterministic bottom-up computation techniques for computing stable models. However,
the results of this construction provide merely candidate solutions that still need to satisfy
all integrity constraints. If this succeeds, they constitute stable models of the austere
program.

Let us make this precise for an austere logic program (F,C,D, I) in what follows.
To make choices and inject them into the bottom-up computation, we translate the entire
set choices, C, into a set of facts:

FC = {a← | {a} ← ∈ C}

A subset of FC , the original facts F , along with the definite programD are then passed to
a corresponding consequence operator that determines a unique stable model candidate.
More precisely, the TP operator of a definite program P is defined for an interpretation
X as follows [21]:

TP (X) = {l1 | (l1 ← lm+1 ∧ · · · ∧ ln) ∈ P, X |= lm+1 ∧ · · · ∧ ln}

With this, the candidate solutions of an austere program can be defined.

Definition 5. Let (F,C,D, I) be an austere logic program over A.
We define a set X ⊆ A of atoms as a candidate stable model of (F,C,D, I), if X is

the least fixpoint of TF∪C′∪D for some C ′ ⊆ FC .

The existence of the least fixpoint is warranted by the monotonicity of TF∪C′∪D [21].
Similar to traditional ASP, several candidate models are obtained via the different choices
of C ′.

While the choice of C ′ constitutes the guess part and the definite rules in D the
define part of the approach, the check part is accomplished by the integrity constraints in
I .

Proposition 3. Let (F,C,D, I) be an austere logic program over A and X ⊆ A.
Then, X is a stable model of (F,C,D, I) iff X is a candidate stable model of

(F,C,D, I) such that X |= I .

We illustrate the computation of stable models of austere logic programs in the
following example.

Answer Set Programming Made Easy 9

Example 3. Consider the austere logic program P

a←
{b} ←
c← b
← a ∧ ¬c

We get the candidate stable models {a, b, c} and {a} from the first three rules depending
on whether we choose b to be true or not, that is, whether we add the fact b ← or not.
Then, on testing them against the integrity constraint expressed by the fourth rule, we
see that {a, b, c} is indeed a stable model, since it satisfies the integrity constraint, while
{a} is not a stable model since checking the integrity constraint fails.

A major intention of austere logic programs is to confine the actual guess and check
of an encoding to dedicated components, namely, the choices in C and constraints in I .
The definite rules in D help us to analyze and/or extend the solution candidate induced
by the facts F and the actual choices in C ′. The emerging candidate is then evaluated
by the integrity constraints in I . This stresses once more the idea that the extension of a
guessed solution candidate should be deterministic; it elaborates the guess but refrains
from introducing any ambiguities. This is guaranteed by the definite rules used in austere
programs.

Observation 1 For any austere logic program (F,C,D, I) and C ′ ⊆ FC , the logic
program F ∪ C ′ ∪D has a unique stable model.

This principle is also in accord with [23], where stratified logic program are used instead
of definite ones (see below).

5 Easy answer set programming

Austere logic programs provide a greatly simplified format that reflects ASP’s guess-
define-check methodology [18] for writing encodings. Their simple structure allows
for translating the methodology into an intuitive process that consists of making non-
deterministic choices, followed by a deterministic bottom-up computation, and a final
consistency check.

In what follows, we want to turn the underlying principles into a modeling method-
ology for ASP that aims at laypersons. To this end, we leave the propositional setting
and aim at full-featured input languages of ASP systems like clingo [13] and dlv [17].
Accordingly, we shift our attention to predicate symbols rather than propositions and
let the terms ‘logic program’, ‘rule’, etc. refer to these languages without providing a
technical account (cf. [11, 6]). Moreover, we allow for normal rules instead of definite
ones as well as aggregate literals in bodies in order to accommodate the richness of
existing ASP modeling languages.

The admission of normal rules comes at the expense of losing control over the origin
of multiple or non-existing stable models as well as over a deterministic development
of guessed solutions. In fact, the idea of Easy Answer Set Programming (ezASP) is to
pursue the principles underlying austere logic programs without enforcing them through

10 Jorge Fandinno, Seemran Mishra, Javier Romero, and Torsten Schaub

a severely restricted syntax. However, rather than having the user fully absorb the loss in
control, we shift our focus to a well-founded development of ASP encodings, according
to which predicates are defined on top of previously defined predicates (or facts). This
parallels the structure and the resulting operational semantics of austere logic programs.

To this end, we start by capturing dependencies among predicates [3].

Definition 6. Let P be a logic program.

– A predicate symbol p depends upon a predicate symbol q, if there is a rule in P with
p on its left-hand side and q on its right-hand side.
If p depends on q and q depends on r, then p depends on r, too.

– The definition of a predicate symbol p is the subset of P consisting of all rules with
p on their left-hand side.

We denote the definition of a predicate symbol p in P by def (p) and view integrity
constraints as rules defining ⊥.

Our next definition makes precise what we mean by a well-founded development of
a logic program. 6

Definition 7. Let P be a logic program.
We define a partition (P1, . . . , Pn) of P as a stratification of P , if

1. def (p) ⊆ Pi for all predicate symbols p and some i ∈ {1, . . . , n} and
2. if p depends on q, def (p) ⊆ Pi, and def (q) ⊆ Pj for some i, j ∈ {1, . . . , n}, then

(a) i > j unless q depends on p, and
(b) i = j otherwise

Any normal logic program has such a stratification. One way to see this is that mutually
recursive programs can be trivially stratified via a single partition. For instance, this
applies to both programs {a ← b, b ← a} and {a ← ¬b, b ← ¬a} in which a and b
mutually depend upon each other. Accordingly, similar recursive structures in larger
programs are confined to single partitions, as required by (2b) above.

With it, we are ready to give shape to the concept of an easy logic program.

Definition 8 (Easy logic program). An easy logic program is a logic program having
stratification (F,C,D1, . . . , Dn, I) such that F is a set of facts, C is a set of choice
rules, Di is a set of normal rules for i = 1, . . . , n, and I is a set of integrity constraints.

As in traditional ASP, we often divide a logic program into facts representing a problem
instance and the actual encoding of the problem class. For easy programs this amounts
to separating F from (C,D1, . . . , Dn, I).

Clearly, an austere logic program is also an easy one.
Thus, the program in Listing 1.1 is also an easy logic program having the stratification

({1, 2, 3}, {5}, {6, 7}, {8, 9, 10})

where each number stands for the rules in the respective line.

6 The term stratification differs from the one used in the literature [3].

Answer Set Programming Made Easy 11

Predicates node/1, edge/2, and start/1 are only used to form facts or occur
in rule bodies. Hence, they do not depend on any other predicates and can be put together
in a single component, F . This makes sense since they usually constitute the problem
instance. Putting them first reflects that the predicates in the actual encoding usually
refer to them. The choices in C provide a solution candidate that is checked by means of
the rules in the following components. In our case, the guessed extension of predicate
hc/2 in Line 5 is simply a subset of all edges provided by predicate edge/2. Tests
for being a path or even a cycle are postponed to the define-check part: The rules in
{6, 7}, that is, D1, define the auxiliary predicate reached/1, and aim at analyzing
and/or extending our guessed solution candidate by telling us which nodes are reachable
via the instances of hc/2 from the start node. The actual checks are then conducted by
the integrity constraints, I , in the final partition {8, 9, 10}. At this point, the solution
candidate along with all auxiliary atoms are derived and ready to be checked. Line 8
tests whether each node is reached in the solution at hand, while lines 9 and 10 make
sure that a valid cycle never enters or leaves any node twice.

Finally, it is instructive to verify that strata {5} and {6, 7} cannot be reversed or
merged. We observe that

– hc/2 depends on edge/2 only,

while

– reached/1 depends on hc/2, edge/2, start/1, and itself,

and no other dependencies. The rules defining hc/2 and reached/1 must belong
to the same partition, respectively, as required by (2a) above. Thus, {5} ⊆ Pi and
{6, 7} ⊆ Pj for some i, j. Because reached/1 depends on hc/2 and not vice versa,
we get i < j. This dependency rules out an inverse arrangement, and the fact that it is
not symmetric excludes a joint membership of both definitions in the same partition, as
stipulated by (2b) above.

5.1 Modeling methodology

The backbone of easy ASP’s modeling methodology is the structure imposed on its
programs in Definition 8. This allows us to encode problems by building concepts
on top of each other. Also, its structure allows for staying in full tune with ASP’s
guess-define-check methodology [18] by offering well-defined spots for all three parts.

Easy logic programs tolerate normal rules in order to encompass full-featured ASP
modeling languages. Consequently, the interplay of the guess, define, and check parts of
easy logic program defies any control. To tame this opening, we propose to carry over
Observation 1 to easy logic programs: For any easy logic program (F,C,D1, . . . , Dn, I)
and C ′ ⊆ FC , the logic program F ∪ C ′ ∪D1 ∪ · · · ∪Dn should have a unique stable
model. Even better if this can be obtained in a deterministic way.

This leads us to the following advise on easy ASP modeling:

1. Compartmentalize a logic program into facts, F , choice rules, C, normal rules,
D1 ∪ · · · ∪Dn, and integrity constraints I ,
such that the overall logic program has stratification (F,C,D1, . . . , Dn, I).

12 Jorge Fandinno, Seemran Mishra, Javier Romero, and Torsten Schaub

2. Aim at defining one predicate per stratum Di and avoid cycles within each Di for
i = 1, . . . , n.

3. Ensure that F ∪ C ′ ∪D1 ∪ · · · ∪Dn has a unique stable model for any C ′ ⊆ FC .

While the first two condition have a syntactic nature and can thus be checked auto-
matically, the last one refers to semantics and, to the best of our knowledge, has only
sufficient but no known necessary syntactic counterparts. One is to restrictD1∪· · ·∪Dn

to definite rules as in austere programs, the other is to use stratified negation, as proposed
in [23] and detailed in the next section.

Our favorite is to stipulate that F ∪ C ′ ∪D1 ∪ · · · ∪Dn has a total well-founded
model [25] for any C ′ ⊆ FC but unfortunately, we are unaware of any syntactic class of
logic programs warranting this condition.

5.2 Stratified negation

The purpose of stratified negation is to eliminate the (problematic) case of recursion
through negation. What makes this type of recursion problematic is that it may eliminate
stable models and that the actual source may be spread over several rules. To give some
concise examples, consider the programs {a← ¬a} and {a← ¬b, b← ¬c, c← ¬a}
admitting no stable models. Following the dependencies in both examples, we count one
and three dependencies, respectively, all of which pass through negated body literals.
More generally, cyclic dependencies traversing an odd number of negated body literals
(not necessarily consecutively) are known sources of incoherence. Conversely, an even
number of such occurrences on a cycle is not harmful but spawns alternatives, usually
manifested in multiple stable models. To see this, consider the program {a← ¬b, b←
¬a} producing two stable models. Neither type of rule interactions is admitted in austere
logic programs. Rather the idea is to confine the sources of multiple and eliminated
stable models to dedicated components, namely, choices and integrity constraints. The
same idea was put forward by Niemelä in [23] yet by admitting a more general setting
than definite rules by advocating the concept of stratified negation.

To eliminate the discussed cyclic constellations, stratified negation imposes an
additional constraint on the stratification of a logic program: Given the prerequisites of
Definition 7, we define:

3. If a predicate symbol q occurs in a negative body literal of a rule in Pi, then
def (q) ⊆ Pj for some j < i.

In other words, while the definitions of predicates appearing positively in rule bodies
may appear in a lower or equal partition, the ones of negatively occurring predicates are
restricted to lower components. Although this condition tolerates positive recursion as in
{a← b, b← a}, it rules out negative recursion as in the above programs. Since using
programs with stratified negation rather than definite programs generalizes austere logic
programs, their combination with choices and integrity constraints is also as expressive
as full ASP [23].

An example of stratified negation can be found in Listing 1.3. The negative literal in
Line 5 refers to a predicate defined — beforehand — in Line 8.

Answer Set Programming Made Easy 13

An attractive feature of normal logic programs with stratified negation is that they
yield a unique stable model, just as with austere programs (cf. Observation 1). Hence,
they provide an interesting generalization of definite rules maintaining the property of
deterministically extending guessed solution candidates.

5.3 Complex constraints

As mentioned, we aim at accommodating complex language constructs as aggregates in
order to leverage the full expressiveness of ASP’s modeling languages. For instance, we
may replace lines 9 and 10 in Listing 1.1 by

9 :- { hc(U,V) } >= 2, node(U).
10 :- { hc(U,V) } >= 2, node(V).

without violating its stratification.
More generally, a rule with an aggregate ‘#op{l1, . . . , lm} ≺ k’ in the consequent

can be represented with choice rules along with an integrity constraint, as shown in [24].
That is, we can replace any rule of form

#op{l1, . . . , lm} ≺ k ← lm+1 ∧ · · · ∧ ln

by7

{li} ← lm+1 ∧ · · · ∧ ln for i = 1, . . . ,m and
⊥ ← ¬(#op{l1, . . . , lm} ≺ k) ∧ lm+1 ∧ · · · ∧ ln .

This allows us to integrate aggregate literals into easy logic programs without sacrificing
expressiveness.

In fact, many encodings build upon restricted choices that are easily eliminated by
such a transformation. A very simple example is graph coloring. Assume a problem
instance is given in terms of facts node/1, edge/2, and color/1. A corresponding
encoding is given by the following two rules:

1 { assign(X,C) : color(C)} = 1 :- node(X).
2 :- edge(X,Y), assign(X,C), assign(Y,C).

Note that the aggregate in the consequent of Line 1 is a shortcut for a #count aggregate.
To eliminate the restricted choice from the consequent in Line 1, we may apply the

above transformation to obtain the following easy encoding:

1 { assign(X,C) } :- node(X), color(C).
2 :- not { assign(X,C) : color(C)} = 1, node(X).
3 :- edge(X,Y), assign(X,C), assign(Y,C).

Given some set of facts,F , this encoding amounts to the easy logic programs (F, {1}, {2}, {3})
The decomposition into a choice and it restriction may appear unnecessary to the

experienced ASP modeler. However, we feel that such a separation adds clarity and is
7 In practice, a set of such choice rules can be represented by a single one of form {l1, . . . , lm} ←
lm+1 ∧ · · · ∧ ln.

14 Jorge Fandinno, Seemran Mishra, Javier Romero, and Torsten Schaub

preferable to language constructs combining several aspects, at least for ASP beginners.
Also, it may be worth noting that this decomposition is done anyway by an ASP system
and hence brings about no performance loss.

Two further examples of easy logic programs are given in Listing 1.2 and 1.3, solving
the Queens and the Tower-of-Hanoi puzzles both with parameter n. 8 While the easy

1 { queen(1..n,1..n) }.
2
3 d1(I,J,I-J+n) :- I = 1..n, J = 1..n.
4 d2(I,J,I+J-1) :- I = 1..n, J = 1..n.
5
6 :- { queen(I,1..n) } != 1, I = 1..n.
7 :- { queen(1..n,J) } != 1, J = 1..n.
8
9 :- { queen(I,J) : d1(I,J,D) } > 1, D=1..n*2-1.

10 :- { queen(I,J) : d2(I,J,D) } > 1, D=1..n*2-1.

Listing 1.2. An easy logic program for the n-Queens puzzle

logic program for the n-Queens puzzle has the format

(∅, {1}, {3, 4}, {6, 7}, {9, 10}),

the one for the Tower-of-Hanoi puzzle can be partitioned into

({1, 2, 3, 4}, {6}, {8}, {10, 11, 12}, {14, 15}, {17, 19, 20, 21, 23}) .

5.4 Limitations

The methodology of ezASP has its limits. For instance, sometimes it is convenient to
make choices depending on previous choices. Examples of this are the combination of
routing and scheduling, as in train scheduling [1], or the formalization of frame axioms
in (multi-valued) planning advocated in [16]. Another type of encodings escaping
our methodology occur in meta programming, in which usually a single predicate, like
holds, is used and atoms are represented as its arguments. Thus, for applying the ezASP
methodology, one had to refine the concept of stratification to access the term level in
order to capture the underlying structure of the program. And finally, formalizations of
planning and reasoning about actions involve the formalization of effect and inertia laws
that are usually self-referential on the predicate level (sometimes resolved on the term
level, through situation terms or time stamps). A typical example of circular inertia laws
is the following:

holds(F,T) :- holds(F,T-1), not -holds(F,T).
-holds(F,T) :- -holds(F,T-1), not holds(F,T).

8 This parameter is either added from the command line via option --const or a default added
via directive #const (see [12] for details).

Answer Set Programming Made Easy 15

1 peg(a;b;c).
2 disk(1..4).
3 init_on(1..4,a).
4 goal_on(1..4,c).
5
6 { move(D,P,T) : disk(D), peg(P) } :- T = 1..n.
7
8 move(D,T) :- move(D,_,T).
9

10 on(D,P,0) :- init_on(D,P).
11 on(D,P,T) :- move(D,P,T).
12 on(D,P,T+1) :- on(D,P,T), not move(D,T+1), T < n.
13
14 blocked(D-1,P,T+1) :- on(D,P,T), T < n.
15 blocked(D-1,P,T) :- blocked(D,P,T), disk(D).
16
17 :- { move(D,P,T) : disk(D), peg(P) } != 1, T = 1..n.
18
19 :- move(D,P,T), blocked(D-1,P,T).
20 :- move(D,T), on(D,P,T-1), blocked(D,P,T).
21 :- not 1 { on(D,P,T) } 1, disk(D), T = 1..n.
22
23 :- goal_on(D,P), not on(D,P,n).

Listing 1.3. An easy logic program for a Towers-of-Hanoi puzzle (for plans of length n)

Here, ‘-’ denotes classical negation, and F and T stand for (reified) atoms and time
points. On the other hand, the sophistication of the given examples illustrates that they
are usually not addressed by beginners but rather experts in ASP for which the strict
adherence to ezASP is less necessary.

6 Related work

Apart from advocating the idea illustrated in the introduction, Niemelä also showed
in [23] that negative body literals can be replaced by a new atom for which a choice
needs to be made whether to include it in the model or not; and such that a model cannot
contain both the new atom and the atom of the replaced literal but one of them needs to
be included. This technique amounts exactly to the transformation in Definition 2 and
traces back to Abductive logic programming [8, 7]. Indeed, Greco et al. already showed
in [15] that for DATALOG queries the expressive power of stable model semantics can
be achieved via stratified negation and choices.

We elaborated upon this idea in several ways. First, we have shown that the full
expressiveness of normal logic programs can even be achieved with definite rules rather
than normal ones with stratified negation. Second, we have provided a strong equivalence
result that allows for applying the transformation in Definition 2 to selected rules only.
Third, we have generalized the idea by means of the logic of Here-and-There, which

16 Jorge Fandinno, Seemran Mishra, Javier Romero, and Torsten Schaub

made it applicable to other fragments of logic programs. And finally, this investigation
has revealed that the roots of the idea lie in the logical principle of extension by definition.

Over the last decades many more related ideas were presented in the literature. For
instance, in [9], normal logic programs are translated into positive disjunctive programs
by introducing new atoms for negative literals. Also, strong negation is usually compiled
away via the introduction of new atoms along with integrity constraints excluding that
both the original atom and the atom representing its strong negation hold [14]. The
principle of extension by definition was also used in [10] to prove properties about
programs with nested expressions. Finally, the paradigm of IDP [5] is closely related to
ezASP in the sense that F , C and I are expressed in IDP in first-order logic while the
Di’s form inductive definitions.

7 Conclusion

We have revisited an old idea from the literature on logic programming under stable
model semantics and elaborated upon it in several ways. We started by tracing it back to
the principle of extension by definition. The resulting formalization in the setting of the
logic of Here-and-there provides us with a logical framework that can be instantiated
in various ways. Along these lines, we have shown that normal logic programs can
be reduced to choices, definite rules, and integrity constraints, while keeping the same
expressiveness as the original program. A major advantage of this austere format is that
it confines non-determinism and incoherence to well-defined spots in the program. The
resulting class of austere logic programs could play a similar role in ASP as formulas in
conjunctive normal form in classical logic.

Drawing on the properties observed on austere logic program, we put forward the
modeling methodology of ezASP. The idea is to compensate for the lacking guaran-
tees provided by the restricted format of austere programs by following a sequential
structure when expressing a problem in terms of a logic program. This makes use of
the well-known concept of stratification to refine ASP’s traditional guess-define-check
methodology. Although the ordering of rules may seem to disagree with the holy grail of
full declarativeness, we evidence its great value in introducing beginners to ASP. Also,
many encodings by experienced ASP users follow the very same pattern.

Moreover, the ezASP paradigm aligns very well with that of achievements [19] that
aims not only at easily understandable but moreover provably correct programs. To this
end, formal properties are asserted in between a listing of rules to express what has
been achieved up to that point. Extending ezASP with achievements and automatically
guiding the program development with ASP verifiers, like anthem [20], appears to us as
a highly interesting avenue of future research. In this context, it will also be interesting
to consider the components of an easy logic programs as modules with an attached
input-output specification, so that the meaning of the overall program emerges from
the composition of all components. This would allow for successive refinements of
programs’ components, while maintaining their specification.

Answer Set Programming Made Easy 17

References

1. Abels, D., Jordi, J., Ostrowski, M., Schaub, T., Toletti, A., Wanko, P.: Train scheduling with
hybrid ASP. In: Balduccini et al. [4], pp. 3–17

2. Aguado, F., Cabalar, P., Fandinno, J., Pearce, D., Pérez, G., Vidal, C.: Forgetting auxiliary
atoms in forks. Artificial Intelligence 275, 575–601 (2019)

3. Apt, K., Blair, H., Walker, A.: Towards a theory of declarative knowledge. In: Minker, J. (ed.)
Foundations of Deductive Databases and Logic Programming, chap. 2, pp. 89–148. Morgan
Kaufmann Publishers (1987)

4. Balduccini, M., Lierler, Y., Woltran, S. (eds.): Proceedings of the Fifteenth International
Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR’19), Lecture
Notes in Artificial Intelligence, vol. 11481. Springer-Verlag (2019)

5. Bruynooghe, M., Blockeel, H., Bogaerts, B., De Cat, B., De Pooter, S., Jansen, J., Labarre, A.,
Ramon, J., Denecker, M., Verwer, S.: Predicate logic as a modeling language: Modeling and
solving some machine learning and data mining problems with IDP3. Theory and Practice of
Logic Programming 15(6), 783–817 (2015)

6. Calimeri, F., Faber, W., Gebser, M., Ianni, G., Kaminski, R., Krennwallner, T., Leone, N.,
Maratea, M., Ricca, F., Schaub, T.: ASP-Core-2 input language format. Theory and Practice
of Logic Programming 20(2), 294–309 (2019)

7. Denecker, M., Kakas, A.: Abduction in logic programming. In: Kakas, A., Sadri, F. (eds.)
Computational logic: Logic programming and beyond, pp. 402–436. Springer-Verlag (2002)

8. Eshghi, K., Kowalski, R.: Abduction compared with negation by failure. In: Levi, G., Martelli,
M. (eds.) Proceedings of the Sixth International Conference on Logic Programming (ICLP’89).
pp. 234–255. MIT Press (1989)

9. Fernández, J., Lobo, J., Minker, J., Subrahmanian, V.: Disjunctive LP + integrity constraints=
stable model semantics. Annals of Mathematics and Artificial Intelligence 8(3-4), 449–474
(1993)

10. Ferraris, P., Lifschitz, V.: Weight constraints as nested expressions. Theory and Practice of
Logic Programming 5(1-2), 45–74 (2005)

11. Gebser, M., Harrison, A., Kaminski, R., Lifschitz, V., Schaub, T.: Abstract Gringo. Theory
and Practice of Logic Programming 15(4-5), 449–463 (2015), http://arxiv.org/abs/
1507.06576

12. Gebser, M., Kaminski, R., Kaufmann, B., Lindauer, M., Ostrowski, M., Romero, J., Schaub, T.,
Thiele, S.: Potassco User Guide. University of Potsdam, 2 edn. (2015), http://potassco.
org

13. Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Multi-shot ASP solving with clingo.
Theory and Practice of Logic Programming 19(1), 27–82 (2019), http://arxiv.org/
abs/1705.09811

14. Gelfond, M., Lifschitz, V.: Logic programs with classical negation. In: Warren, D., Szeredi, P.
(eds.) Proceedings of the Seventh International Conference on Logic Programming (ICLP’90).
pp. 579–597. MIT Press (1990)

15. Greco, S., Saccà, D., Zaniolo, C.: Extending stratified datalog to capture complexity classes
ranging from P to QH. Acta Informatica 37(10), 699–725 (2001)

16. Lee, J., Lifschitz, V., Yang, F.: Action language BC: Preliminary report. In: Rossi, F. (ed.)
Proceedings of the Twenty-third International Joint Conference on Artificial Intelligence
(IJCAI’13). pp. 983–989. IJCAI/AAAI Press (2013)

17. Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., Scarcello, F.: The DLV
system for knowledge representation and reasoning. ACM Transactions on Computational
Logic 7(3), 499–562 (2006), http://www.arxiv.org/ps/cs.AI/0211004

18 Jorge Fandinno, Seemran Mishra, Javier Romero, and Torsten Schaub

18. Lifschitz, V.: Answer set programming and plan generation. Artificial Intelligence 138(1-2),
39–54 (2002)

19. Lifschitz, V.: Achievements in answer set programming. Theory and Practice of Logic
Programming 17(5-6), 961–973 (2017)

20. Lifschitz, V., Lühne, P., Schaub, T.: Verifying strong equivalence of programs in the input
language of GRINGO. In: Balduccini et al. [4], pp. 270–283

21. Lloyd, J.: Foundations of Logic Programming. Symbolic Computation, Springer-Verlag
(1987)

22. McCarthy, J.: Elaboration tolerance (1998), http://www-formal.stanford.edu/
jmc/elaboration.html

23. Niemelä, I.: Answer set programming without unstratified negation. In: Garcia de la Banda,
M., Pontelli, E. (eds.) Proceedings of the Twenty-fourth International Conference on Logic
Programming (ICLP’08). Lecture Notes in Computer Science, vol. 5366, pp. 88–92. Springer-
Verlag (2008)

24. Simons, P., Niemelä, I., Soininen, T.: Extending and implementing the stable model semantics.
Artificial Intelligence 138(1-2), 181–234 (2002)

25. Van Gelder, A., Ross, K., Schlipf, J.: The well-founded semantics for general logic programs.
Journal of the ACM 38(3), 620–650 (1991)

A Proofs

Lemma 1. Let ψ and ϕ be formulas over A, xϕ 6∈ A and H ⊆ T ⊆ (A ∪ {xϕ}).
Then, 〈H,T 〉 |= (ψ[ϕ/xϕ] ∧ (ϕ ↔ xϕ)) if and only if 〈H ∩ A, T ∩ A〉 |= ψ and
H\A = {xϕ | 〈H ∩ A, T ∩ A〉 |= ϕ}.

Proof. Since xϕ /∈ A, ϕ and ψ are formulas over A, (by structural induction) we get
that 〈H,T 〉 |= ϕ iff 〈H ∩ A, T ∩ A〉 |= ϕ and 〈H,T 〉 |= ψ iff 〈H ∩ A, T ∩ A〉 |= ψ.

=⇒ Suppose 〈H,T 〉 |= (ψ[ϕ/xϕ] ∧ (ϕ ↔ xϕ)). By the rule substitution of
equivalents, we get 〈H,T 〉 |= (ψ ∧ (ϕ ↔ xϕ)) and it follows that 〈H,T 〉 |= ψ and
〈H∩A, T∩A〉 |= ψ. So, if 〈H,T 〉 |= (ψ[ϕ/xϕ]∧(ϕ↔ xϕ)), then 〈H∩A, T∩A〉 |= ψ.

Also, since 〈H,T 〉 |= (ϕ ↔ xϕ), we know that xϕ ∈ H iff 〈H,T 〉 |= ϕ. Conse-
quently, xϕ ∈ H\A iff 〈H ∩ A, T ∩ A〉 |= ϕ. It follows that if 〈H,T 〉 |= (ψ[ϕ/xϕ] ∧
(ϕ↔ xϕ)), then 〈H ∩ A, T ∩ A〉 |= ψ and H\A = {xϕ | 〈H ∩ A, T ∩ A〉 |= ϕ}.
⇐= Suppose 〈H∩A, T ∩A〉 |= ψ andH\A = {xϕ | 〈H∩A, T ∩A〉 |= ϕ}. Then

〈H,T 〉 |= ψ, and H\A = {xϕ | 〈H,T 〉 |= ϕ}. It implies that 〈H,T 〉 |= (ψ ∧ (ϕ ↔
xϕ)) and by the rule substitution of equivalents, we get 〈H,T 〉 |= ψ[ϕ/xϕ]∧ (ϕ↔ xϕ).

Proof (Proposition 1). =⇒ Let a set of atoms T over A be a stable model of ψ. Then
〈T, T 〉 |= ψ. Consider a set of atoms T ′ = T ∪ {xϕ | 〈T, T 〉 |= ϕ}. Then from Lemma
1, 〈T ′, T ′〉 |= ψ[ϕ/xϕ] ∧ (ϕ↔ xϕ).

Suppose some interpretation 〈H ′, T ′〉whereH ′ ⊂ T ′, is a model of ψ[ϕ/xϕ]∧(ϕ↔
xϕ). Then, from Lemma 1, ((H ′∩A)∪{xϕ | 〈H ′∩A, T 〉 |= ϕ}) ⊂ (T∪{xϕ | 〈T, T 〉 |=
ϕ}) and 〈H ′ ∩A, T 〉 |= ψ. But since T is a stable model of ψ, we get that H ′ ∩A = T ,
this leads us to a contradiction. So T ′ is a stable model (ψ[ϕ/xϕ] ∧ (ϕ↔ xϕ)).
⇐= Let a set of atoms T ′ over A ∪ {xϕ} be a stable model of (ψ[ϕ/xϕ] ∧ (ϕ↔

xϕ)). Then 〈T ′, T ′〉 |= (ψ[ϕ/xϕ] ∧ (ϕ ↔ xϕ)). Suppose T = T ′ ∩ A. Then from
Lemma 1, 〈T, T 〉 |= ψ with and T ′\A = {xϕ | 〈T, T 〉 |= ϕ}.

Answer Set Programming Made Easy 19

Suppose some interpretation 〈H,T 〉 where H ⊂ T , is a model of ψ. Also, H ′ =
H ∪ {xϕ | 〈H,T 〉 |= ϕ} ⊂ T ∪ {xϕ | 〈H,T 〉 |= ϕ}. By persistence, if 〈H,T 〉 |= ϕ,
then 〈T, T 〉 |= ϕ. So H ′ ⊂ T ′ and by Lemma 1, 〈H ′, T ′〉 |= (ψ[ϕ/xϕ] ∧ (ϕ ↔ xϕ)).
But T ′ is a stable model of (ψ[ϕ/xϕ] ∧ (ϕ↔ xϕ)) and we get a contradiction. So T is
a stable model of ψ.

It follows that ψ and (ψ[ϕ/xϕ] ∧ (ϕ↔ xϕ)) over A and hence ψ ∼=A (ψ[ϕ/xϕ] ∧
(ϕ↔ xϕ)).

Proof (Proposition 2). It follows from the proof of Proposition 1.

Lemma 2. Let φ1 and φ2 be two formulas over any vocabulary. Then,

(¬φ1 ↔ φ2) ` (¬φ2 ∨ φ2)

Proof.

1 ¬φ1 ↔ φ2

2 ¬φ1 ← φ2 ↔E, 1

3 φ2 ← ¬φ1 ↔E, 1

4 ¬φ1 ∨ ¬¬φ1 Weak Excluded Middle

5 ¬φ1

6 φ2 ←E, 3, 5

7 φ2 ∨ ¬φ2 ∨I, 6

8 ¬¬φ1

9 φ2

10 ¬φ1 ←E, 2, 9

11 ⊥ ⊥I, 8, 10

12 ¬φ2 ¬I, 9–11

13 ¬φ2 ∨ φ2 ∨I, 12

14 ¬φ2 ∨ φ2 ∨E, 4

Lemma 3. For any pair of formulas φ1 and φ2, the following conditions hold:

1. (¬(φ1 ∧ φ2) ∧ ¬(¬φ1 ∧ ¬φ2)) ∼= (¬¬(¬φ1 ↔ φ2))
2. (¬¬(¬φ1 ↔ φ2) ∧ (¬φ2 ∨ φ2)) ∼= ((¬φ1 ↔ φ2) ∧ (¬φ2 ∨ φ2))

Proof. For any two formulas φ1 and φ2 over A,
First, we prove that

(φ1 ∨ ¬φ2) ` (φ1 ← φ2) (2)

20 Jorge Fandinno, Seemran Mishra, Javier Romero, and Torsten Schaub

1 φ1 ∨ ¬φ2

2 φ2

3 φ1

4 φ1 R, 3

5 ¬φ2

6 ⊥ ¬E, 2, 5

7 φ1 ⊥E, 7

8 φ1 ∨E, 1, 3–4, 5–7

9 φ1 ← φ2 ←I, 2–8

Then, we can prove that,

(¬(φ1 ∧ φ2) ∧ ¬(¬φ1 ∧ ¬φ2)) ` ¬¬(¬φ1 ↔ φ2) (3)

1 ¬(φ1 ∧ φ2) ∧ ¬(¬φ1 ∧ ¬φ2)

2 ¬(φ1 ∧ φ2) ∧E, 1

3 ¬φ1 ∨ ¬φ2 De Morgan’s law , 2

4 ¬φ1 ← φ2 (2), 3

5 ¬¬(¬φ1 ← φ2) ¬¬φ← φ, 4

6 ¬(¬φ1 ∧ ¬φ2) ∧E, 1

7 ¬¬(φ2 ∨ φ1) De Morgan’s law , 6

8 ¬¬(φ2 ∨ ¬¬φ1) ¬¬φ← φ, 7

9 ¬¬(φ2 ← ¬φ1) (2), 8

10 ¬¬(¬φ1 ← φ2) ∧ ¬¬(φ2 ← ¬φ1) ∧I, 5, 9

11 ¬(¬(¬φ1 ← φ2) ∨ ¬(φ2 ← ¬φ1)) De Morgan’s law , 10

12 ¬¬((¬φ1 ← φ2) ∧ (φ2 ← ¬φ1)) De Morgan’s law , 11

13 ¬¬(¬φ1 ↔ φ2) ↔I, 12

We prove that,

¬¬(¬φ1 ↔ φ2) ` (¬(φ1 ∧ φ2) ∧ ¬(¬φ1 ∧ ¬φ2)) (4)

Answer Set Programming Made Easy 21

1 ¬¬(¬φ1 ↔ φ2)

2 φ1 ∧ φ2

3 ¬φ1 ↔ φ2

4 ¬φ1 ← φ2 ↔E, 3

5 φ2 ∧E, 2

6 ¬φ1 ←E, 3, 4

7 φ1 ∧E, 2

8 ⊥ ⊥I, 6, 7

9 ¬(¬φ1 ↔ φ2) ⊥E, 3–8

10 ⊥ ⊥I, 1, 9

11 ¬(φ1 ∧ φ2) ⊥E, 2–10

12 ¬φ1 ∧ ¬φ2

13 ¬φ1 ↔ φ2

14 ¬φ1 ← φ2 ↔E, 13

15 ¬φ1 ∧E, 12

16 φ2 ←E, 13, 14

17 ¬φ2 ∧E, 12

18 ⊥ ⊥I, 16, 17

19 ¬(¬φ1 ↔ φ2) ⊥E, 13–18

20 ⊥ ⊥I, 11, 19

21 ¬(¬φ1 ∧ ¬φ2) ⊥E, 12–20

22 (¬(φ1 ∧ φ2) ∧ ¬(¬φ1 ∧ ¬φ2)) ∧I, 11, 21

So from (3) and (4),

(¬(φ1 ∧ φ2) ∧ ¬(¬φ1 ∧ ¬φ2)) ∼= (¬¬(¬φ1 ↔ φ2)) (5)

We prove that,

(¬(φ1 ∧ φ2) ∧ ¬(¬φ1 ∧ ¬φ2) ∧ (¬φ2 ∨ φ2)) ` (¬φ1 ↔ φ2) (6)

22 Jorge Fandinno, Seemran Mishra, Javier Romero, and Torsten Schaub

1 ¬(φ1 ∧ φ2) ∧ ¬(¬φ1 ∧ ¬φ2) ∧ (¬φ2 ∨ φ2)

2 ¬(φ1 ∧ φ2) ∧E, 1

3 ¬φ1 ∨ ¬φ2) De Morgan’s law , 2

4 ¬φ1 ← φ2) (2), 3

5 ¬(¬φ1 ∧ ¬φ2) ∧E, 1

6 ¬¬φ1 ∨ ¬¬φ2) De Morgan’s law , 5

7 ¬¬φ2 ← ¬φ1) (2), 6

8 ¬φ2 ∨ φ2 ∧E, 1

9 ¬φ2

10 ¬¬¬φ2 ¬¬¬φ← ¬φ, 9

11 ¬¬¬φ2 ∨ φ2 ∨I, 10

12 φ2

13 φ2 R, 12

14 φ2 ∨ ¬¬¬φ2 ∨I, 13

15 φ2 ∨ ¬¬¬φ2 ∨E, 8, 9–11, 12–14

16 φ2 ← ¬¬φ2 (2), 15

17 φ2 ← ¬φ1 ←E, 7, 16

18 ¬φ1 ↔ φ2 ↔I, 4, 17

Then from (5) and (6),

(¬¬(¬φ1 ↔ φ2) ∧ (¬φ2 ∨ φ2)) ` (¬φ1 ↔ φ2) (7)

We know that,
(¬φ1 ↔ φ2) ` (¬¬(¬φ1 ↔ φ2)) (8)

So from (7) and (8),

(¬¬(¬φ1 ↔ φ2) ∧ (¬φ2 ∨ φ2)) ∼= ((¬φ1 ↔ φ2) ∧ (¬φ2 ∨ φ2)) (9)

Proof (Theorem 1). Let N (ψ) = {ϕ1, ..., ϕn}. For 1 ≤ i ≤ n, we define a sequence of
formulas as:

ψ0 =ψ (10)
ψi =ψi−1 ∧ (ϕi ↔ xϕi) (11)

Answer Set Programming Made Easy 23

Then ψn = ψ ∧
∧
ϕ∈N (ψ)(ϕ ↔ xϕ). From Proposition 1, we know that ψ ∼=A

(ψ[ϕ1/xϕ1] ∧ (ϕ1 ↔ xϕ1)) and on substitution of the equivalents, we get ψ ∼=A
(ψ ∧ (ϕ1 ↔ xϕ1

)) and it follows that ψ0
∼=A ψ1. So, for 1 ≤ i ≤ n, ψi−1 ∼=A ψi and

ψ0
∼=A ψn, that is,

ψ ∼=A (ψ ∧
∧

ϕ∈N (ψ)

(ϕ↔ xϕ))

By substitution of equivalents,

ψ ∼=A ψn ∼= (ψ
[
ϕ/xϕ | ϕ ∈ N (ψ)

]
∧

∧
ϕ∈N (ψ)

(ϕ↔ xϕ))

For ϕ ∈ N (ψ), from Lemma 2, we can see that, (ϕ↔ xϕ) ` (¬xϕ ∨ xϕ). So,

ψ ∼=A ψn ∼= (ψ
[
ϕ/xϕ | ϕ ∈ N (ψ)

]
∧

∧
ϕ∈N (ψ)

(ϕ↔ xϕ) ∧
∧

ϕ∈N (ψ)

(¬xϕ ∨ xϕ))

From Lemma 3 part 2,

((ϕ↔ xϕ) ∧ (¬xϕ ∨ xϕ)) ∼= (¬¬(ϕ↔ xϕ) ∧ (¬xϕ ∨ xϕ))

It follows that,

ψ ∼=A ψn ∼= (ψ
[
ϕ/xϕ | ϕ ∈ N (ψ)

]
∧

∧
ϕ∈N (ψ)

¬¬(ϕ↔ xϕ)∧
∧

ϕ∈N (ψ)

(¬xϕ∨xϕ)) = ψ?

Hence, ψ ∼=A ψ?.

Proof (Theorem 2). Let N (ψ) = {ϕ1, ..., ϕn}. Similar to proof of Theorem 1, for
1 ≤ i ≤ n, we define a sequence of formulas as:

ψ0 =ψ (12)
ψi =ψi−1 ∧ (ϕi ↔ xϕi) (13)

Then ψn = ψ ∧
∧
ϕ∈N (ψ)(ϕ↔ xϕ).

For 1 ≤ i ≤ n, we define a sequence of set of atoms as:

T0 =T (14)
Ti =Ti−1 ∪ {xϕi

| 〈T, T 〉 |= ϕi} (15)

Then, Tn = T ∪ {xϕ | ϕ ∈ N (ψ), 〈T, T 〉 |= ϕ}. By the substitution of equivalents, we
can see that, ψ1

∼= (ψ
[
ϕ1/xϕ1

]
∧ (ϕ1 ↔ xϕ1

)). Additionally, from Proposition 2 we
get that T is a stable model of ψ if and only if T ∪ {xϕ1

| 〈T, T 〉 |= ϕ1} is a stable
model of (ψ

[
ϕ1/xϕ1

]
∧ (ϕ1 ↔ xϕ1

)). It follows that T is a stable model of ψ if and
only if T1 is a stable model of ψ1. Similarly, for 1 ≤ i ≤ n, Ti−1 is a stable model of
ψi−1 if and only if Ti is a stable model of ψi. It follows that T is a stable model of ψ
if and only if Tn is a stable model of ψn. From the proof of Theorem 1, we know that
ψn ∼= ψ?. It follows that T is a stable model of ψ if and only if Tn is a stable model of
ψ? and hence the Theorem’s statements follows.

24 Jorge Fandinno, Seemran Mishra, Javier Romero, and Torsten Schaub

Proof (Corollary 2). From part 1 of Lemma 3, we can see that (¬¬(¬a↔ ā)) can be
expressed in form of integrity constraints as

←a ∧ ā
←¬a ∧ ¬ā

Also, the disjunction ā ∨ ¬ā is a choice rule of form {ā} ←. So from Theorem 1,
r ∼=A r? and P ∼=A P ?.

Proof (Corollary 3). From the proof of Corollary 2, we can see that for a rule r, r? using
Definition 1 can be expressed alternatively as shown in Definition 2. So, the Corollary
follows from program translation in Definition 3 and from Theorem 2.

Proof (Proposition 3). =⇒ Let a set of atoms X be a stable model of (F,D,C, I).
Suppose C ′ ⊆ C be the set of choice rules of form

{a} ← (16)

where a ∈ X . We know 〈X,X〉 |= (F ∪ C ′ ∪D). Also, a rule r ∈ (F ∪ FC′ ∪D) can
be expressed as

a← B (17)

where a is an atom and B is a set of atoms. It follows that a ∈ X if B ⊆ X and
T(F∪FC′∪D)(X) ⊆ X .

SupposeX ′ is a pre-fixpoint of T(F∪FC′∪D) whereX ′ ⊂ X . So T(F∪FC′∪D)(X
′) ⊆

X ′ and then for a rule r ∈ (F ∪ FC′ ∪ D) expressed as (17), a ∈ X ′ if B ⊆ X ′ if
B ⊆ X . It follows that 〈X ′, X〉 |= (F ∪ FC′ ∪D). Since 〈X ′, X〉 |= FC′ , then for a
rule r ∈ FC′ of form

{a} ← (18)

we see that a ∈ X ′, 〈X ′, X〉 |= a, 〈X ′, X〉 |= (a;¬a) and hence 〈X ′, X〉 |= C ′.
For r ∈ C\C ′ of form (16), we know that a 6∈ X , 〈X,X〉 6|= a, 〈X ′, X〉 |= ¬a,
〈X ′, X〉 |= (a;¬a) and hence 〈X ′, X〉 |= C\C ′. So 〈X ′, X〉 |= (F ∪ C ∪D ∪ I) but
since X is the stable model of (F ∪ C ∪D ∪ I), we get a contradiction. It follows that
X is the least fixpoint of T(F∪FC′∪D) where C ′ ⊆ C. So X is a candidate stable model
of (F,C,D, I) and 〈X,X〉 |= I .
⇐= Suppose a set of atoms X be a candidate stable model of (F,D,C, I) such

that 〈X,X〉 |= I . Then, X is the least fixpoint of T(F∪FC′∪D) for some C ′ ⊆ C and
T(F∪FC′∪D)(X) ⊆ X . Any rule r ∈ (F ∪ FC′ ∪D) is of the form (17) and it follows
that a ∈ X if B ⊆ X . So 〈X,X〉 |= r and we get that 〈X,X〉 |= (F ∪ FC′ ∪D). For a
rule r ∈ C of form (16), a ∈ X or a 6∈ X . So 〈X,X〉 |= (a;¬a) and 〈X,X〉 |= r. It
follows that 〈X,X〉 |= (F ∪ C ∪D ∪ I).

Suppose some 〈X ′, X〉 |= (F ∪ C ∪ D ∪ I), where X ′ ⊂ X . Then for r ∈
(F ∪ FC′ ∪ D), a ∈ X ′ if 〈X ′, X〉 |= B if B ⊆ X ′. Hence T(F∪FC′∪D)(X

′) ⊆ X ′.
Since X is the least pre-fixpoint of T(F∪FC′∪D), we arrive at a contradiction and so X
is the stable model of (F,D,C, I).

