
Noname manuscript No.
(will be inserted by the editor)

Centurio, a General Game Player: Parallel, Java- and
ASP-based

Maximilian Möller · Marius Schneider · Martin Wegner · Torsten

Schaub

Received: 30 July 2010 / Accepted: 11 September 2010

Abstract We present the General Game Playing sys-

tem Centurio. Centurio is a Java-based player featuring

different strategies based on Monte Carlo Tree Search

extended by techniques borrowed from Upper Confi-

dence bounds applied to Trees as well as Answer Set

Programming (for single-player games). Centurio’s Monte

Carlo Tree Search is accomplished in a massively paral-

lel way by means of multi-threading as well as cluster-

computing. Another major feature of Centurio is its

compilation of game descriptions, states, and state ma-

nipulations into Java, yielding an edge over existing

Prolog-based approaches. Centurio is open source soft-

ware freely available via the web.

Keywords Answer set programming · General game

playing · Monte Carlo tree search · Parallelization

1 Introduction

General Game Playing (GGP; [9]) has attracted much

attention in the last years because of its integral nature,

necessitating the combination of various techniques from

Artificial Intelligence within a realtime environment. In

this way, it can be regarded a modern “fruit fly” 1 of Ar-

tificial Intelligence. Besides advanced search, GGP re-

quires techniques from agent programming, automated

planning, decision making, game theory, knowledge rep-

resentation and reasoning, and many more. Notably,

M. Möller · M. Schneider · M. Wegner · T. Schaub
University of Potsdam, Institute for Informatics,
August-Bebel-Str. 89, 14482 Potsdam, Germany
E-mail: ggp@barney.cs.uni-potsdam.de

T. Schaub
E-mail: torsten@cs-uni-potsdam.de

1 Drosophila melanogaster, often called the common fruit
fly, is an important model organism in biology.

current GGP systems can be roughly grouped into knowl-

edge-free and knowledge-based approaches, joining an

old debate in Artificial Intelligence [3].

Centurio features a mix of such techniques, using

a refined Monte Carlo Tree Search approach on sym-

bolic state representations for multiplayer games and

the knowledge-based problem solving approach of An-

swer Set Programming for single-player games. The for-

mer is supported by a massively parallel architecture

taking advantage of multi-threading and cluster-com-

puting for maximizing the exploration of the game tree.

Another major feature of Centurio is its compilation of

game descriptions, states, and state manipulations into

Java, yielding an edge over existing Prolog-based ap-

proaches. The idea is to translate each game description

into Java source code while ensuring the semantics of

the game description language GDL. The resulting Java

code comprises the respective state information and cal-

culates successor states according to the chosen move

and the underlying game description. Centurio is open

source software, freely available via the web at [13].

This paper is organized as follows. Section 2 gives

a short overview about the basics of the Monte Carlo

Tree Search method. Section 3 describes the approach

of Centurio by detailing its major features. We summa-

rize the approach and discuss future work in Section 4.

2 Background: Monte Carlo Tree Search

Monte Carlo Tree Search (MCTS; [5]) is a best-first

search method that is based on randomized explorations

of the search space and a popular technique in General

Game Playing having its roots in the old Asian game

Go. Figure 1 shows the main four phases of MCTS: se-

lection, expansion, simulation (random game) and back-

2 Maximilian Möller et al.

Selection

a’

a3=a’

a1

a2

Expansion Simulation

a’

a’

a1

a2

Backpropagation

Repeated X times

The selection function is

applied recursively until

a leaf node is reached

and the sequence of

actions is memorised

One or more nodes

are created

One simulated

game is played

The result of this game is

backpropagated in the tree

and the actions of the nodes

were updated with the

actions of the sequence

Fig. 1 Monte Carlo Tree Search (inspired by [5])

propagation. It is an anytime algorithm, where at any

time the collected information can be used to choose

the currently best action.

The main extension to MCTS is Upper Confidence

bound applied to Trees (UCT; [12]). It uses the Upper

Confidence Bound Equation (1) as the selection strat-

egy for MCTS. It provides a balance between explor-

ing new states and exploiting existing knowledge about

states.

Q⊕UCT (s, a) = QUCT (s, a) + c ∗

√
log(n(s))

n(s, a)
(1)

QUCT (s, a) is the winning probability or average score

in state s with action a and represents the exploitation

part of Equation (1). The second summand is weighted

by a factor c and represents the exploration part. n(s, a)

counts how often a was chosen in state s, whereas n(s) =∑
a n(s, a). The exploration part decreases the more a

move a is chosen in state s.

In large state spaces UCT converges slowly to the

most promising move. Therefore Rapid Action Value

Estimation (RAVE; [8]) is an important extension to

UCT. RAVE rates every action, which is selected at

any time following state s. It is shown red in Figure

1. The combination of UCT and RAVE is calculated

through a weighting:

QMCTS = α ·Q⊕UCT + (1− α) ·Q⊕RAV E

where α is the weight, which starts with a value near 0

and increases over time.

Another extension for large branching factors is pro-

gressive widening [5]. It prunes all actions, which are

under a certain threshold, to let UCT concentrate on

important actions. After a certain number of simula-

tions one action after another is unpruned.

Game

Centurio

ASP

Game Classes
Single-player Sequential Multiplayer Parallel Multiplayer

Parallelization
Thread Parallelization Cluster Parallelization

Reasoner
ECLiPSe Prolog GDLJavaC

MCTS Modes
MCTS for Single-player (standard) MCTS MCTS (sum over opponents)

Fig. 2 Design of Centurio

3 The Centurio Approach

This section introduces the four major features of Cen-

turio, whose interaction is visualized in Figure 2. We be-

gin with adaptions of MCTS neccessary for a successful

use in the domain of General Game Playing in Section

3.1. Because the strength of a MCTS-based General

Game Player heavily depends on the number of random

games, we focus on techniques that are able to increase

it. One technique is the parallelization of MCTS to in-

crease the number of random games run within a given

time, described in Section 3.2. The other technique is to

speed up the state manipulations and so each random

game by translating the game description received from

the gamemaster into Java sourcecode (see Section 3.3).

To compensate the weakness of MCTS in single-player

games with many game states but only one solution

Centurio makes use of Answer Set Programming as de-

scribed in Section 3.4.

3.1 MCTS - Adaptions to Domain of GGP

An effective use of MCTS in the domain of GGP re-

quires a distinction of games into single-player, sequen-

tial, and parallel games.

Centurio, a General Game Player: Parallel, Java- and ASP-based 3

3.1.1 MCTS in Single-player Games

In single-player games no other players are involved and

the game result is solely dependent on the own moves.

This makes it practical to always store the moves of the

random game that achieved the best result.

In single-player games the game tree is explored

with the usual MCTS approach but Centurio does not

use the winning probability QUCT (s, a) of Equation (1)

to make the decision for the move that is transmitted to

the Gamemaster. The fact that for each random game

the true outcome is available makes it possible for Cen-

turio to choose the best move based on the best played

random game. This means that Centurio plays at any-

time the best game it is currently aware of. In case

MCTS finds a maximum score game, Centurio sends

the stored moves of the game move by move to the

Gamemaster.

3.1.2 MCTS in Sequential Multiplayer Games

The MCTS/UCT approach is designed for sequential

multiplayer games with 2 players. To be able to play

sequential games with more than 2 players, every player

has an own winning probability. If the opponent has to

choose a move, Centurio assumes that the opponents

intelligence is as strong as its own and its strategy is

the one, Centurio would play instead. The selection of

the move, which is transmitted to the Gamemaster, uses

the selection strategy:

π(r) = arg max
a∈A

(QUCT (r, a)). (2)

In Equation (2), π is the selection strategy and r is the

current game state. A is the set of all possible actions

in this state.

Before this selection strategy is used, Centurio checks

if the list of possible moves contains at least one move

which causes Centurio to win with a maximum score

of the game in the next step. In this case, Centurio

immediately selects this victory move.

3.1.3 MCTS in Parallel Multiplayer Games

Parallel games are the most difficult ones because every

player has several moves in each state. If each player has

at most k possible moves, for n players kn is an upper

bound for the number of moves. To determine Centu-

rio’s move maximizing its own score, all combinations

of all other players must be taken into account. Under

the assumption that there are n players and Centurio

is the m-th player (1 ≤ m ≤ n), the following formula

determines the best move:

π(r) = arg max
am∈A

∑
ai6=m∈A

QUCT (r, (a1, . . . , an)). (3)

However, the calculation of (3) is too expensive and so

Centurio only uses it for the choice of the move to send

to the Gamemaster. The selection function of MCTS

needs to be very efficient. This fact forces us to estimate

the best move by taking the move with highest mean

UCT value over all players:

Q⊕UCT (s, a) =

∑k
m=1QUCTm

(s, a)

k
+ c ∗

√
log(n(s))

n(s, a)

where QUCTm
(s, a) is the winning probability of the m-

th player in state s with move a.

3.1.4 MCTS in Cooperative Games

Centurio cannot detect cooperative games and it seems

that it is hard to extract this information from a GDL

description. We do not follow the paranoid assumption

[16] that every opponent is against Centurio, but we as-

sume that every player tries to maximize its own score.

We also assume that the best action for Centurio is also

the best action for Centurio’s team and so Centurio’s

score should be somewhat equal to the partners’ ones.

3.2 Parallelization

MCTS is designed for high scalability. We introduce two

parallelization approaches. The threadsafe paralleliza-

tion (see Section 3.2.1) is only reasonable and usable on

a multicore system. While it profits from computations

on a single game tree, in the alternative cluster paral-

lelization (see Section 3.2.2) each cluster node works on

its own game tree.

3.2.1 Thread Parallelization

Thread parallelization uses local mutexes (soft barri-

ers) to ensure that all threads can access the game tree

without any race conditions. In other words, every node

has its own mutex. When a thread accesses a node, it

reduces the node’s MCTS value. The decision which

action is chosen is based on the following equation:

π(s) = arg max
a∈A

(
QMCTS(s, a)√
t(s, a) + 1

)
.

t(s, a) is the number of threads with state s including

action a and A is the set of all possible actions in this

4 Maximilian Möller et al.

state. In most cases, the UCT values are small and a

reduced UCT value causes other threads to choose a

node with a higher value. The result of this case is that

every thread chooses another way through the game

tree. A very promising way consists of nodes with much

higher UCT values than other nodes have. In this case,

it is possible that threads take the same way through

the game tree. With this strategy the UCT heuristic

does not lose much influence and the processor cores

are distributed over the most promising branches.

3.2.2 Cluster Parallelization

An easy way to parallelize a Java-based general game

player for a cluster is provided by Terracotta [11]. Terra-

cotta is an open source infrastructure software that of-

fers a Network-Attached Memory (NAM) where a sub-

set of the application’s data structures can be stored.

Every operation (read, write) on a structure, which is

stored in the NAM and is therefore available for several

nodes of the cluster, must be thread-safe. Terracotta is

able to generalize thread-safe operations to the cluster.

In the case of cluster parallelization, MCTS is run-

ning independently on each cluster node because it de-

pends on random games. Each node creates its own

game tree that is independent from the other game

trees investigated by other nodes. In each game tree,

a root represents the current state of the game. We call

its children the decision level that represents the states,

which can be reached with one legal move in the current

state. Every node expedites the convergence to the real

winning probability of the states from the decision level

if the results are shared between them. The idea is to

merge the decision levels of all cluster nodes weighted

by each tree node’s visits by writing it to the NAM. Now

the procedure responsible for sending the best move to

the Gamemaster can take the decision on basis of the

merged heuristic values of the decision level.

MCTS’s strength depends on the number of random

games it has performed. The more nodes are executing

MCTS, the less Centurio is dependent from fortuity and

the better the move can be. So for Centurio’s approach

there is no need to parallelize the algorithm itself. This

brought us nearly linear speedup (7,42) in the number

of random games on a cluster with up to 8 available

nodes.

The effect of nodes working on the same game tree

should be that each node profits from the others heuris-

tic values in the selection phase of MCTS on each level

(not only on the decision level). We tried to generalize

the thread parallelization, introduced in Section 3.2.1,

to the cluster but in fact, the access to the data in the

NAM was too expensive and we were far away from lin-

ear speedup because the selection and backpropagation

phase of MCTS have extensive read access to the game

tree.

3.3 GDLJavaC - A GDL to Java Compiler

Every general game player, and in fact every artificial

game player, is based on a low level mechanism for state

manipulation, determining initial state, legal moves, or

next state (called reasoner). The strength of the tree

search algorithm heavily depends on the reasoners ef-

ficiency. Typically a general game player makes use of

a Prolog-based reasoner. The Game Description Lan-

guage (GDL; [4]) has its roots in the logic program-

ming language Datalog and therefore parsing the game

description to Prolog source code is the most obvious

and widespread approach.

While for concrete games like Connect4, the state

manipulation can be customized to reach speed im-

provements, in the general game discipline there is no

information about the game available until Centurio

has to play it. So tuning algorithms to a concrete game

is not quite easy and contradicts the idea of generality.

Centurio uses the Prolog system ECLiPSe [1], which

provides an interface to Java. If several Prolog instances

are needed for parallelization, the player is forced to

use a socket-based communication interface, producing

some communication overhead. To keep this overhead

as small as possible, the random games are played au-

tonomously by the reasoner and Centurio has no influ-

ence on a random game once it is triggered. Waugh [18]

presents an approach for improving the speed of state

manipulation by generating C++-Code out of a game

description, which we have adapted to Java. Besides

performance improvements, the approach gives Centu-

rio the possibility to regain control over random games

because it makes communication through external in-

terface obsolete.

The central idea is to parse each game description

into Java source code, in view of the semantics of special-

purpose GDL syntax. The resulting code is able to cal-

culate all derivations of each predicate that are true in

a given state.

The basic components of the system are covered

first. A game description consists of two parts, a static

and a dynamic one. GDL facts like (role ?x) build the

static part, because they do not depend on the game’s

progress and are true in the derivation of each state.

They have to be calculated only once. Dynamic rules

Centurio, a General Game Player: Parallel, Java- and ASP-based 5

public stat ic LinkedList<step> s t ep 0 (HashMap<Str ing , LinkedList<GDLPredicate>> tempFacts) {
LinkedList<step> r e s u l t s = new LinkedList<step >() ;
LinkedList<GDLPredicate> r e s0 = tempFacts . get (” step ”) ;
i f (r e s0 != null) {

for (GDLPredicate res0Item : r e s0) {
s tep re s0 I temstep = (step) res0Item ;
i f (true) {

LinkedList<succ> r e s1 = succ . succ 10 (re s0 I t emstep . var0 , tempFacts , moves) ;
for (GDLPredicate res1Item : r e s1) {

succ res1I temsucc = (succ) res1Item ;
step temp2step = new s tep (res1 I temsucc . var1) ;
r e s u l t s . add (temp2step) ;

}
}

}
}
return r e s u l t s ;

}

Fig. 3 Example method source code for predicate step

like

(<= (next (step ?y)) (4)

(true (step ?x))

(succ ?x ?y))

depend on what is true in the current state and its

derivations, that might differ in various states, build

the dynamic part.

For each predicate symbol (e. g. step), a Java class

is created. The dynamic part of the game description

consists of class instances that represent, for instance, a

fully instantiated step predicate. This means the vari-

able in the predicate is replaced by a term from all

possible assignments. All legally instantiated step pred-

icates are derived by the class’s method.

For illustration, we take a closer look at the method

generation for rule (4): we get to game step y, if the

game step is currently x and y is the successor of x.

This predicate counts moves. Ignoring the meta predi-

cate next, predicate step results in the Java method in

Figure 3. The methods’s name step 0 indicates that the

corresponding predicate has a single variable as argu-

ment, which is unbound, and the method shall provide

all possible bindings of it as result. A method called

step 1 would indicate, there is one bound variable that

is passed as method argument and the method only

determines, whether the predicate is satisfiable with it

as argument. The hashmap tempFacts corresponds to

the dynamic part of the game description. For every

instance of step that exists in tempFacts, we have to

determine the successor of the first and only property

of step and create a new step instance with the suc-

cessor as new property. To determine the successor we

call the method succ 10 of the class succ. The first vari-

able of succ is bound through the variable x of the step

predicate. So we want only all possible bindings for the

versions random games factor

Tic Tac Toe
Centurio V2.1 3994

2,66Centurio GDLJavaC 10611
Connect 4

Centurio V2.1 4864
2,48Centurio GDLJavaC 12057

Checkers
Centurio V2.1 1232

2,16Centurio GDLJavaC 2659
Skirmisch

Centurio V2.1 126
2,46Centurio GDLJavaC 312

Blobwars
Centurio V2.1 29

2,9Centurio GDLJavaC 85

Table 1 Benchmark results, comparison of Centurio V2.1
(Prolog) and Centurio (GDLJavaC), metrics are taken after a
startclock of 30 seconds

second variable y as the result and based on that, we

create a new step instance with the new property.

3.3.1 Benchmarks

To measure the performance of GDLJavaC a bench-

mark was performed. Four games: Tic Tac Toe, Con-

nect4, Checkers, and Blobwars were played with a start-

clock of 30. Two versions of Centurio compete against

each other. Centurio V2.1 has ECLiPSe Prolog as

reasoner and Centurio GDLJavaC is backed by GDL-

JavaC. After the startclock, the achieved number of

random games are recorded. The results are presented

in Table 1. GDLJavaC performed better than the cor-

responding Prolog reasoner. In every game, the new

reasoning mechanism can double up the executed ran-

dom games. The more random games are performed by

Centurio’s Monte Carlo Tree Search, the better is its

playing ability.

With GDLJavaC, Centurio is able to control the

random game process and we concentrate on random

game policies for MCTS in future work.

6 Maximilian Möller et al.

3.4 Answer Set Programming

A new approach in General Game Playing is the use of

Answer Set Programming (ASP; [2]). ASP is a declara-

tive problem solving paradigm offering a rich modeling

language [6] along with highly efficient inference engines

based on Boolean constraint solving technology [7]. The

basic idea of ASP is to encode a problem as a logic

program such that its answer sets represent solutions.

Because ASP is designed for problems in NP, it is a per-

fect support in General Game Playing for problems at

the corresponding complexity. Centurio uses the ASP

systems (Clingo and iClingo) from the University of

Potsdam, which are available in the potassco project

under [6].

First approaches, described in 3.4.1 and [17], use

ASP to solve single-player games. Another application

of ASP is automated theorem proving [15] to prove au-

tomatically and efficiently game characteristics. In the

next section, the topic of single-player games is dis-

cussed. Thereafter an evaluation of this approach and

a discussion of the future work is touched.

3.4.1 ASP as Single-player Game Solver

The use of MCTS is a typical approach in General

Game Playing although it is not always the best choice.

If there is only one solution with 100 points and a large

state space, the probability to find it is near 0 (e. g.

Lightsout and 8puzzle). Because MCTS weights actions

according to their winning probability or their average

goal score, it can be easily fooled by certain games (e. g.

Firefighters [14]).

In the case of single-player games, where no other

players have effect on the game, ASP is a perfect way

to solve such games. Because ASP is designed for prob-

lems in NP, which is the same worst case complexity of

single-player games, and the syntax of GDL is similar

to the syntax of ASP, ASP can be used in a straightfor-

ward way. Only a mapping from the Game Description

Language into the input language of ASP is necessary.

The following mapping is invented in [17] and only ex-

tended from Centurio in some points. A detailed and

technical view on the mapping can be found in [13].

1. Disjunctions are removed and equality added2.

2. A time parameter to all meta predicates and time

dependent predicates is added.

(e. g. next(φ) 7→ holds(φ, t+ 1))

3. Constraints are added that guarantee the game se-

mantics and winning properties.

(e. g. :- terminal(t), not goal(R,100,t), role(R).

2 There is no direct way to use equality in GDL.

is an integrity constraint which ensures the answer

set has a terminal state with 100 points)

One main bottleneck is the memory consumption

of grounding. It can happen that the grounding fails

because of shortage of memory. One approach to solve

this problem is the use of an incremental grounding sys-

tem, e. g. iClingo. For each time step, grounding and

solving alternates. Hence it is not necessary to ground

the whole problem in advance.

In addition, the use of Clingo, as a non-incremental

grounding system, has a drawback. It is necessary to

estimate the length of the move sequence to reach the

maximum score. In most cases, only an approximation

of this length is possible. If it is an underapproximation

no solution is found. And if it is an overapproximation

the instantiated problem gets to big and the solving

process gets slower. In contrast, iClingo does not need

this approximation because of its iterative grounding

and solving for each time step.

3.4.2 Benchmarks

In Table 2, we can see the performance of ASP systems

to solve single-player games. Clingo is an out-of-the-

box combination of the grounder gringo and the solver

clasp. iClingo is the extension to incremental ground-

ing. Every “−” in the first two colums marks a time out

(more than 600 sec) or a shortage of memory (2 GB).

The benchmarks were executed on an Intel i7 CPU 940

(using one core). The last two rows show the sum of

running times of all single-player games (see [14]) and

the number of games which could not be solved with

ASP.

The last column shows the possibility to solve the

game with the Centurio implementation of MCTS. Ev-

ery X means that the MCTS approach can solve it

whereas − means that it cannot be solved with MCTS.

We see that the choice between Clingo and iClingo

can be crucial to be able to solve a game. In addition

the conclusion of these tests are that ASP can be a

useful extension to MCTS in cases where MCTS fails.

3.4.3 Future

To overcome the grounding problem there exist some

new approaches. An extension of iClingo takes advan-

tage of the fact that the domain of each next and true

predicate is the same. Hence the instantiated encoding

can be much smaller.

On the other hand, it is possible to optimize the

running time of solver with an automatic configuration

Centurio, a General Game Player: Parallel, Java- and ASP-based 7

Game Clingo iClingo MCTS

8puzzle 18,09 164,44 −
asteroidsserial 5,93 0,19 X
buttons 0,00 0,00 X
god 109,04 10,24 X
hanoi 374,73 − −
lightsout 0,95 0,91 −
pancakes 77,35 14,49 X
queens 5,23 5,53 X
uf20-01.cnf.SAT 0,28 − −
snake 2009 big 237,51 − X
twisty-passages 1,63 7,79 −
46 single-player games∑

6317,77 7669,55 −
outs 9 12 22

Table 2 Time in sec, Clingo (complete grounding with
heuristic for game depth), iClingo (incremental grounding),
possibility to solve it with MCTS(X/−)

of the parameters. For example, resolution based pre-

processing of clasp can extremely speed up the running

time in some games.

In addition, it is not clear in which other application

of General Game Playing ASP can also be used. One

approach could be to decompose a two player game into

two independent single-player games [10]. Or to use it

in games where all player have to cooperate to reach

the same goal.

In all scenarios where the task can be mapped to

an NP-problem ASP is an efficient way to solve it. But

it is not limited to it. ASP can be used to calculate

Monte Carlo simulations, too. If it is faster than Prolog

and GDLJavaC, it could be a third possible choice as a

reasoner.

4 Discussion

To test the strength and interaction of all approaches,

Centurio took part in the competition General Intelli-

gence in Game-Playing Agents (GIGA’09). This com-

petition was in the scope of the International Joint

Conferences on Artificial Intelligence (IJCAI) held in

Pasadena, California, USA. Centurio completed the pre-

liminaries as the group leader. In the preliminaries Cen-

turio won against CadiaPlayer the double world cham-

pion in 2007 and 2008 from Reykjav́ık (Iceland). In the

finals Centurio achieved a respectable fourth place.

Nevertheless, Centurio has some known weaknesses:

A very large branching factor of the game tree, of-

ten found in parallel multiplayer games, is a critical

weakness of MCTS. In most cases, progressive widening

cannot avoid this because the start- and playclock are

mostly to short and the branching factor is too large.

The performance of MCTS is based on the number

of random games played and so the time for one random

game must be a fraction of a second. One random game

for games like chess or othello requires more than one

second. For such games, MCTS performs very bad with

current GDL-based state manipulation approaches.

Some game descriptions include two distinct games.

For example a sequential multiplayer game which in-

cludes two single-player games for each player. The move

choice of player 1 would have no direct influence on

player’s 2 winning probability. Without detection of

such game properties, the state space blows up unnec-

essarily. In future versions, Centurio should be able to

detect such games.

References

1. ECLiPSe (2010). Http://www.eclipseclp.org/
2. Baral, C.: Knowledge Representation, Reasoning and

Declarative Problem Solving. Cambridge University
Press (2003)

3. Brooks, R.: Intelligence without representation. Artificial
Intelligence 47(1-3), 139–159 (1991)

4. Ceri, S., Gottlob, G., Tanca, L.: Logic Programming and
Databases. Springer-Verlag (1990)

5. Chaslot, G., Winands, M., Szita, I., van den Herik, H.:
Parameter Tuning by the Cross-Entropy Method. In:
European Workshop on Reinforcement Learning 2008
(2008)

6. Gebser, M., Kaminski, R., Kaufmann, B., Ostrowski,
M., Schaub, T., Thiele, S.: A user’s guide to
gringo, clasp, clingo, and iclingo. Available at
http://potassco.sourceforge.net

7. Gebser, M., Kaufmann, B., Neumann, A., Schaub, T.:
clasp: A conflict-driven answer set solver. In: C. Baral,
G. Brewka, J. Schlipf (eds.) Proceedings of the Ninth
International Conference on Logic Programming and
Nonmonotonic Reasoning (LPNMR’07), Lecture Notes in

Artificial Intelligence, vol. 4483, pp. 260–265. Springer-
Verlag (2007)

8. Gelly, S., Silver, D.: Combining online and offline knowl-
edge in uct. In: In Zoubin Ghahramani, editor, Proceed-
ings of the International Conference of Machine Learning
(ICML 2007, pp. 273–280 (2007)

9. Genesereth, M., Love, N., Pell, B.: General game playing:
Overview of the AAAI competition. AI Magazine 26(2),
62–72 (2005)

10. Günther, M., Schiffel, S., Thielscher, M.: Factoring Gen-
eral Games. In: Proceedings of the IJCAI-09 Workshop
on General Game Playing (GIGA’09), pp. 27–34 (2009)

11. Inc., T.: Terracotta (2010). Http://www.terracotta.org/
12. Kocsis, L., Szepesvári, C.: Bandit based monte-carlo

planning. In: In: ECML-06. Number 4212 in LNCS, pp.
282–293. Springer (2006)

13. Möller, F.M., Schneider, T.M., Wegner, M.: GGP Uni-
versity of Potsdam (2010). Http://www.ggp-potsdam.de

14. Schiffel, S.: Dresden GGP Server (2009).
Http://euklid.inf.tu-dresden.de:8180/ggpserver/

15. Schiffel, S., Thielscher, M.: Automated Theorem Proving
for General Game Playing. In: Proceedings of IJCAI’09
(2009)

8 Maximilian Möller et al.

16. Sturtevant, N.R., Korf, R.E.: On pruning techniques
for multi-player games. In: Proceedings of the Seven-
teenth National Conference on Artificial Intelligence and
Twelfth Conference on Innovative Applications of Artifi-
cial Intelligence, pp. 201–207. AAAI Press (2000)

17. Thielscher, M.: Answer Set Programming for Single-
Player Games in General Game Playing. In: Proceedings
of the International Conference on Logic Programming
(ICLP). Springer (2009)

18. Waugh, K.: Faster state manipulation in general games
using generated code. In: Proceedings of the 1st General
Intelligence in Game-Playing Agents (GIGA) (2009)

Maximilian Möller is a M.Sc. Stu-
dent at University of Potsdam, where
he received his B.Sc. in Informatics
in 2009. His current research inter-
ests are General Game Playing and
Machine Learning.

Marius Schneider is a PhD Student
at University of Potsdamy, where
he received his M.Sc. in Informat-
ics in 2010. His research interests lie
in the field of applied AI, specifi-
cally General Game Playing, Mas-
chine Learning and Automatic Pa-
rameter Configuration for Boolean
Constraint Solvers.

Martin Wegner is a M.Sc. Stu-
dent at University of Potsdam, where
he received his B.Sc. in Informatics
in 2009. His current research inter-
ests are General Game Playing and
RFID-Chips.

Torsten Schaub had the pleasure to
supervise the Centurio project and
learned a lot from his students. Oth-
erwise, he is heading the Knowledge
Representation and Reasoning group
at the University of Potsdam. He re-
ceived his Diploma and Dissertation
in Informatics in 1990 and 1992, re-
spectively, from the Technical Uni-
versity of Darmstadt. He received his
Habilitation in Informatics in 1995
from the University of Rennes I in
France.

