
ar
X

iv
:2

10
8.

03
06

1v
1

 [
cs

.A
I]

 6
 A

ug
 2

02
1

1

Towards a Semantics for Hybrid ASP systems

Pedro Cabalar1 Jorge Fandinno2,3 Torsten Schaub3 Philipp Wanko3

1University of Corunna, Spain 2Omaha State University, USA 3University of Potsdam, Germany

submitted 1 January 2003; revised 1 January 2003; accepted 1 January 2003

Abstract

Over the last decades the development of ASP has brought about an expressive modeling lan-
guage powered by highly performant systems. At the same time, it gets more and more difficult
to provide semantic underpinnings capturing the resulting constructs and inferences. This is
even more severe when it comes to hybrid ASP languages and systems that are often needed to
handle real-world applications. We address this challenge and introduce the concept of abstract
and structured theories that allow us to formally elaborate upon their integration with ASP. We
then use this concept to make precise the semantic characterization of clingo’s theory-reasoning
framework and establish its correspondence to the logic of Here-and-there with constraints. This
provides us with a formal framework in which we can elaborate formal properties of existing
hybridizations of clingo such as clingcon, clingo[dl], and clingo[lp].

1 Introduction

Answer Set Programming (ASP) is about mapping a logic program onto its so-called sta-

ble models. Over the decades, stable models have been characterized in various ways (Lifschitz 2010),

somehow underpinning their appropriateness as a semantics for logic programs. However,

over the same period, the syntax of logic programs has been continuously enriched, equip-

ping ASP with a highly attractive modeling language. This development also brought

about much more intricate semantics, as nicely reflected by the mathematical apparatus

used in the original definition (Gelfond and Lifschitz 1988) and the one for capturing the

input language of the ASP system clingo (Gebser et al. 2015).

With the growing range of ASP applications in academia and industry (Falkner et al. 2018),

we also witness the emergence of more and more hybrid ASP systems (Lierler 2014;

Kaminski et al. 2017), similar to the raise of SMT solving from plain SAT solving (Barrett et al. 2009).

From a general perspective, the resulting paradigm of ASP modulo theories (AMT) can be

seen as a refinement of ASP, in which an external theory certifies some of a program’s sta-

ble models. A common approach, stemming from lazy theory solving (Barrett et al. 2009),

is to view a theory as an oracle that determines the truth of a designated set of (theory)

atoms in the program. This idea has meanwhile been adapted to the setting of ASP in

various ways, most prominently in Constraint ASP (Lierler 2014) extending ASP with

linear equations. Beyond this, ASP systems like clingo or dlvhex (Eiter et al. 2018)

leave the choice of the specific theory largely open. For instance, clingo merely requires

fixing the interaction between theories and their theory atoms. As attractive as this gen-

erality may be from an implementation point of view, it complicates the development of

generic semantics that are meaningful to existing systems. Not to mention that in ASP

the integration of theories takes place in a non-monotonic context.

http://arxiv.org/abs/2108.03061v1

2 Pedro Cabalar et al

We address this issue and show how the Logic of Here-and-There with constraints

(HTc; Cabalar et al. 2016) can be used as a semantics for clingo’s theory reasoning

framework. Thus, just like the plain Logic of Here-and-There (HT; (?; Pearce 1997))

serves as the logic foundations of ASP, HTc extends this to AMT. In this way, we cannot

only draw on the formal framework of HT but we can moreover study a heterogeneous

approach such as AMT in a the uniform setting of a single logic. To this end, we introduce

the concept of abstract and structured theories that allow us to formally elaborate upon

their integration with ASP. With them, we make precise the semantic characterization of

clingo’s theory-reasoning framework and establish its correspondence to theories in HTc.

This provides us with a formal framework in which we can elaborate formal properties

of existing hybridizations of clingo.

2 Background

We consider an alphabet consisting of two disjoint sets, namely, a set A of proposi-

tional (regular) atoms and a set T of theory atoms, whose truth is governed by some

external theory. Several theory atoms may represent the same theory entity. For example,

clingcon extends the input language of clingo with linear equations over integers. Each

such linear equation is represented by a theory atom of form

&sum{k1 ∗ x1 ; . . . ; kn ∗ xn} ≺ k0 (1)

where xi is an integer variable and ki ∈ Z an integer constant for 0 ≤ i ≤ n; and ≺ is

a comparison symbol such as <=, =, ! =, <, >, >=. In clingo, theory predicates are

preceded by ‘&’. We use letters a, s, and b for atoms in A, T , and A ∪ T , respectively.

A T -logic program over 〈A, T 〉 is a set of rules of the form

b0 ← b1, . . . , bn,¬bn+1, . . . ,¬bm (2)

where bi ∈ A∪T for 0 ≤ i ≤ m and b0 can also be the falsity constant ⊥. We let h(r) = b0
and B(r) = {b1, . . . , bn,¬bn+1, . . . ,¬bm} stand for the head and body of a rule r in (2);

its positive and negative body atoms are given by B(r)
+

= {b1, . . . , bn} and B(r)
−

=

{bn+1, . . . , bm}, respectively. For a program P , we define H (P) = {h(r) | r ∈ P}, B(P) =

{B(r) | r ∈ P}. A system using T -logic programs is, for instance, clingcon where theory

atoms of form (1) correspond to linear equations over integers. We refer to logic programs

augmented by such theory atoms as clingcon-programs. Next, we describe the semantics

of T -logic programs in clingo (Gebser et al. 2016), used for extending it with difference

constraints and linear equations over integers and reals in clingo[dl], clingcon, and

clingo[lp], respectively. In all these systems, we can see the role of the corresponding

external theory as a kind of “certification authority” that sanctions regular stable models

whose theory atoms are in accord with their underlying constraints. To this end, envisage

a two-step process: (1) generate regular stable models and (2) select the ones passing the

theory certification. In step (1), we ignore the distinction between atoms in A and T and

plainly apply the stable model semantics (Gelfond and Lifschitz 1988): A set X ⊆ A ∪ T

of atoms is a model of a T -logic program P over 〈A, T 〉, if h(r) ∈ X whenever B(r)
+ ⊆ X

and B(r)
− ∩X = ∅ for all r ∈ P . The stable models of P are defined via the reduct of P

relative to a set X of atoms, viz. PX = {h(r)← B(r)
+ | r ∈ P,B(r)

− ∩X = ∅}. Then, a

set X of atoms is a stable model of P , if X is the least model of PX . In (2), an external

Towards a Semantics for Hybrid ASP systems 3

theory T is used to eliminate any stable model X whose theory atoms X ∩ T are not in

accord with T. Suppose step (1) yields a stable model of a clingcon-program containing

both atoms &sum{2 ∗ x ; 4 ∗ y} <= 6 and &sum{x ; 2 ∗ y} > 9 . This stable model would

not pass theory certification, since no values for integer variables x and y can satisfy both

linear equations.

In fact, the treatment of each theory atom s (as obtained in the stable model) leaves

room for different semantic options (Gebser et al. 2016). A first option is about the jus-

tification for the truth of s in step (1). If s occurs in a rule head, it is called defined

and its truth must be derived through the program rules. Otherwise, s is said to be

external and we are always free to add it to the program without further justification.

A second semantic option has to do with how we treat s 6∈ X for a stable model X in

step (2). We say that s is strict when s 6∈ X implies that the theory check requires the

“opposite” constraint of s to be satisfied. Otherwise, we say that s is non-strict and the

fact s 6∈ X has no relevant effect during theory certification. Of course, in both cases

s ∈ X implies that the constraint of s is satisfied. As an example, suppose s is the strict

atom &sum{2 ∗ x ; 4 ∗ y} <= 6 and we get s 6∈ X in some stable model X . Then, step (2)

imposes the same constraint as if we had obtained atom &sum{2 ∗ x ; 4 ∗ y} > 6 in X .

Janhunen et al. (2017) argue that only the combinations (non-strict,defined) and (strict,external)

are sensible for linear equation theories. With our focus on these theories, we follow this

proposition and partition the set T of theory atoms into two disjoint sets, namely, F ,

containing theory atoms interpreted in a (non-strict,defined) manner, and E , including

the ones abiding by a (strict,external) interpretation. We refer to theory atoms in F

and E as founded and external, respectively. Intuitively, atoms in F are derived by the

T -logic program, while the ones in E are determined by the theory. Accordingly, for any

T -logic program P over A and T with partition 〈F , E〉, we require that H (P) ∩ E = ∅

and B(P)∩F = ∅. We refer to such programs to be over 〈A, T , E〉 by leaving F implicit.

With this restriction to two interpretations of theory atoms, we can formulate clingo’s

semantics for T -logic programs as follows (Gebser et al. 2016): Informally speaking, a

T-solution S is a subset S ⊆ T of theory atoms whose associated constraints are “sanc-

tioned” by T; this is made precise in Section 3.2. A set X ⊆ A∪T of atoms is a T-stable

model of a T -logic program P over 〈A, T , E〉, if there is some T-solution S such that X

is a stable model of the logic program

P ∪ {s← | s ∈ (S ∩ E)} ∪ {← s | s ∈ T \ (S ∪ E)} (3)

For illustration, consider the clingcon-program P(4/5):

a ← &sum{x; y} = 4 (4)

&sum{y; z} = 2 ← a (5)

This program contains two theory atoms: s1=(&sum{x; y} = 4) is external (it occurs in

a rule body) whereas s2=(&sum{y; z} = 2) is founded (it only occurs in rule heads). To

obtain the stable models of P(4/5), we must decide first a potential set S of theory atoms.

First, note that the shape of such T-solutions S, and ultimately T-stable models, depends

on the theory and external atoms in T and E . For the theory of linear equations, the

intention of external atoms is to find an assignment satisfying the represented constraint

or its complement whenever the external atom is true or false, respectively. Therefore, the

4 Pedro Cabalar et al

existence of s1 implicitly requires another external theory atom s3 = &sum{x; y}! = 4.

Note that in systems like clingcon, answers neither contain s1, s2 nor s3 explicitly. For

a T-stable model X , the answer of the system consists of X ∩A, plus an assignment (or

“witnesses”) satisfying linear equations represented by X ∩T . Then, we are free to either

add the external atom s1 or s3 as a fact, whereas if we decide to leave s2 6∈ S, we must

add the constraint← s2. This leads to two possibilities: X1 = {s1, s2, a} and X2 = {s3}.

If T is the theory of linear equations, there exist several T-solutions S containing {s1, s2}

that justify X1 since there exist multiple integer values for x, y, z satisfying equations

x+ y = 4 and y + z = 2 (e.g. x = 2, y = 2, z = 0). In the case of X2, since the external

atom s3 ∈ X2, any T-solution should satisfy x + y 6= 4. But again, we may easily find

sets S of linear equations that are in accord with that constraint.

The logic of Here-and-there with constraints (HTc; Cabalar et al. 2016) is an extension

of Equilibrium Logic (Pearce 1997) providing logical foundations for constraint satisfac-

tion problems (CSPs) in the setting of ASP. In HTc, a CSP is expressed as a triple

〈X ,D, C〉 (we also call signature), where X is a set of variables over some non-empty

domain D, and C is a set of constraint atoms. A constraint atom provides an abstract

way to relate values of variables and constants according to the atom’s semantics. Most

useful constraint atoms have a structured syntax, but in the general case, we may sim-

ply consider them as strings. For instance, linear equations are expressions of the form

“x+ y = 4”, where x and y are variables from X and 4 is a constant representing some

element from D.

Variables can be assigned some value from D or left undefined. For the latter, we use

the special symbol u /∈ D and the extended domain Du

def= D∪{u}. The set vars(c) ⊆ X

collects all variables occurring in constraint atom c. We assume that every constraint

atom c satisfies vars(c) 6= ∅ (otherwise it is just a truth constant). A valuation v over

X ,D is a function v : X → Du. Moreover, valuation v|X : X → Du is the projection of

v on X ⊆ X . A valuation v can be represented as the set {(x, v(x)) | x ∈ X , v(x) ∈ D},

thus excluding pairs of form (x,u). Hence, v ⊆ v′ stands for {(x, v(x)) | x ∈ X , v(x) ∈

D} ⊆ {(x, v′(x)) | x ∈ X , v′(x) ∈ D}. We also allow for applying valuations v to fixed

values, and so extend their type to v : X ∪ Du → Du by fixing v(d) = d for any d ∈ Du.

We let VX ,D (or simply V) stand for the set of all valuations over X ,D.

The semantics of constraint atoms is defined in HTc via denotations, which are func-

tions J · K : C → 2V , mapping each constraint atom to a set of valuations. They must

satisfy the following properties for all c ∈ C, x ∈ X , and v, v′ ∈ V (Cabalar et al. 2020a):

1. v ∈ J c K and v ⊆ v′ imply v′ ∈ J c K,

2. v ∈ J c K implies v ∈ J c[x/v(x)] K,

3. if v(x) = v′(x) for all x ∈ vars(c) then v ∈ J c K iff v′ ∈ J c K.

where c[s/s′] is the syntactic replacement in c of subexpression s by s′. We assume

that c[x/d] ∈ C for any constraint atom c[x] ∈ C, variable x ∈ X and d ∈ Du.

The flexibility of syntax and semantics of constraint atoms allows us to capture entities

across different theories. For instance, a propositional atom p (as understood in regular

ASP) can also be represented as an HTc-constraint atom “p = t” ∈ C with a single

variable p ∈ X and the expected denotation: J p = t K = {v ∈ V | v(p) = t} assuming

we include a value t ∈ D standing for “true.” We use letter p to denote variables for

propositional constraint atoms and we abbreviate “p = t” simply by “p” in HTc-formulas,

Towards a Semantics for Hybrid ASP systems 5

when there is no ambiguity. For another example, the linear equation x + y = 4 can be

captured via constraint atoms of the same syntax “x+ y = 4” whose denotation is

J “x+ y = 4” K = {v ∈ V | v(x), v(y), 4 ∈ Z, v(x) + v(y) = 4} .

Here, we have vars(“x − y = 4”) = {x, y} ⊆ X . Note that this constraint can only be

satisfied if x and y hold an integer value and 4 ∈ Z.

For clarity, we remove quotes from constraint atoms, when clear from the context.

A formula ϕ over signature 〈X ,D, C〉 is defined as

ϕ ::= ⊥ | c | ϕ ∧ ϕ | ϕ ∨ ϕ | ϕ→ ϕ where c ∈ C.

We define ⊤ as ⊥ → ⊥ and ¬ϕ as ϕ→ ⊥ for any formula ϕ. We let vars(ϕ) stand for set

of variables occurring in all constraint atoms in formula ϕ. A theory is a set of formulas.

In HTc, an interpretation over X ,D is a pair 〈h, t〉 of valuations over X ,D such that

h ⊆ t. The interpretation is total if h = t. Given a denotation J · K, an interpretation 〈h, t〉

satisfies a formula ϕ, written 〈h, t〉 |= ϕ, if

1. 〈h, t〉 6|= ⊥

2. 〈h, t〉 |= c if h ∈ J c K

3. 〈h, t〉 |= ϕ ∧ ψ if 〈h, t〉 |= ϕ and 〈h, t〉 |= ψ

4. 〈h, t〉 |= ϕ ∨ ψ if 〈h, t〉 |= ϕ or 〈h, t〉 |= ψ

5. 〈h, t〉 |= ϕ→ ψ if 〈w, t〉 6|= ϕ or 〈w, t〉 |= ψ for w ∈ {h, t}

We say that an interpretation 〈h, t〉 is a model of a theory Γ, written 〈h, t〉 |= Γ, when

〈h, t〉 |= ϕ for every ϕ ∈ Γ. We write Γ ≡ Γ′ if Γ and Γ′ have the same models. We omit

braces whenever Γ (resp. Γ′) is a singleton. A (total) interpretation 〈t, t〉 is an equilibrium

model of a theory Γ, if 〈t, t〉 |= Γ and there is no h ⊂ t such that 〈h, t〉 |= Γ.

One last comment regarding propositional constraint atoms “p = t” ∈ C. Although,

in principle, we may have valuations assigning p any arbitrary value (like, for instance

v(p) = 4), in practice, there is no way to derive those values (assuming variable p is

not used in other constraints), so any equilibrium model 〈t, t〉 eventually assigns either

t(p) = t or t(p) = u (that, in this context, captures that p does not hold).

3 Logical Characterization of Answer Set Programming Modulo Theory

We now device a variant of HTc for T -logic programs and show that it corresponds to their

original semantics in terms of a program transformation (cf. Section 2; Gebser et al. 2016).

This provides us with an HTc-based semantics for the theory reasoning framework of

clingo that allows for formal elaborations of T -logic programs. To this end, we intro-

duce the concept of an abstract theory T which is our key instrument for establishing more

fine-grained formal foundations. With it, we revisit the transformation-based approach

and give a formal account of T-solutions in Section 3.2.

3.1 Abstract theories

An abstract theory T is a triple 〈T ,S,Û· 〉 where T is a set of theory atoms, S ⊆ 2T is a set

of T-satisfiable sets of theory atoms, and Û· : T → T is a function mapping theory atoms

6 Pedro Cabalar et al

to their complement such that ÛÛs = s for any s ∈ T . We define ÛS = {Ûs | s ∈ S} for any

set S ⊆ T . Note that the set S acts as an oracle whose rationality is beyond our reach.

Despite the limited structure of such theories, some simple properties can be formu-

lated: A set S ⊆ T of theory atoms is

• consistent, if {s,Ûs} 6⊆ S for all s ∈ T ,

• complete, if s ∈ S or Ûs ∈ S for all s ∈ T , and

• closed, if s ∈ S implies Ûs ∈ S.

Accordingly, an abstract theory T = 〈T ,S,Û· 〉 is consistent or complete if all its T-satisfiable

sets S ∈ S are consistent or complete, respectively. Note that any closed set S 6= ∅ is

inconsistent but can be T-satisfiable (e.g., for paraconsistent theories). We mostly use

closed sets to describe subtypes of theory atoms, rather than satisfiable solutions.

As an example, consider an abstract theory L = 〈T ,S,Û·〉 of linear equations, where

• T is the set of all expressions of form (1),

• S is a set of subsets S ⊆ T of expressions of form (1), and

• the complement function is defined as ˇ�&sum{. . .} ≺ c = &sum{. . .} Ù≺ c with <̃= def=

>, Ù= def= ! =, !̂ = def= =, Ù< def= >=, Ù> def= <=, and >̃= def= <.

Note that the set of theory atoms in L is closed. Although we expect theories of linear

equations to be consistent, we have yet no means to establish such a property.

However, we may make sense of certain theories, like linear equations, by associating

a rational way of constructing satisfiable sets of theory atoms. To this end, we relate

abstract theories to a denotational semantics similar to HTc (although other choices

exist). Such theory-specific structures allow us to establish properties of abstract theories

and ultimately characterize their integration into ASP. Given an abstract theory T =

〈T ,S,Û· 〉, we define a structure as a tuple (XT,DT, varsT, J · KT), where

1. XT is a set of variables,

2. DT is a set of domain elements,

3. varsT : T → 2XT is a function giving the set of variables contained in a theory atom

such that varsT(s) = varsT(Ûs) for all theory atoms s ∈ T ,

4. VT = {v | v : XT → DT} is the set of all valuations over XT and DT, and

5. J · KT : T → 2VT is a function mapping theory atoms to sets of valuations such that

v ∈ J s KT iff w ∈ J s KT

for all theory atoms s ∈ T and every pair of valuations v, w agreeing on the value

of all variables varsT(s) occurring in s.

Whenever an abstract theory T is associated with such a structure, we call it structured

(rather than abstract).

Given a set S of theory atoms, we define its denotation as JS KT
def=

⋂

s∈SJ s KT.

We define a theory T = 〈T ,S,Û· 〉 structured by (XT,DT, varsT, J · KT) as compositional,

if S = {S ⊆ T | JS KT 6= ∅}, that is, a set S is T-satisfiable iff its denotation is not empty.

As an example, let us associate the theory of linear equations L with the struc-

ture (XL,DL, varsL, J · KL), where XL is an infinite set of integer variables, DL = Z,

varsL(&sum{k1 ∗ x1 ; . . . ; kn ∗ xn} ≺ k0) = {x1, · · · , xn}, and

Towards a Semantics for Hybrid ASP systems 7

J &sum{k1 ∗ x1 ; . . . ; kn ∗ xn} ≺ k0 KL =

{v ∈ VL | {k1, v(x1), . . . km, v(xm)} ⊆ Z,
∑

1≤i≤n ki ∗ v(xi) ≺ k0}. (6)

With L, a set S of theory atoms capturing linear equations is L-satisfiable, if JS KL is

non-empty. Once L is structured this way, we can establish the following properties.

Proposition 1

The theory L structured by (XL,DL, varsL, J · KL) is compositional and consistent.

Whenever a theory T is compositional, we can define an associated entailment relation

|=T so that S |=T s when JS KT ⊆ J s KT. If S is a singleton, we omit brackets. For

instance, it is easy to see that &sum{x; y} ≥ 1 |=L &sum{x; y} ≥ 0 since any integer

valuation v such that v(x) + v(y) ≥ 1 must satisfy v(x) + v(y) ≥ 0 as well. It is easy to

see that this entailment relation is monotonic, that is, S |=T s implies S ∪S′ |=T s. This

is because, when JS KT ⊆ J s KT, we obtain JS∪S′ KT = JS KT∩JS′ KT ⊆ J s KT too. Notice

that, in general, most non-monotonic formalisms are non-compositional in the sense that

their satisfiability condition S ∈ S usually depends on the whole set S of theory atoms

and cannot be described in terms of the individual satisfiability of each atom s ∈ S.

Compositional theories are interesting from an implementation point of view, since they

allow for handling partial assignments that can be extended monotonically.

Some compositional theories have a complement Ûs whose denotation is precisely the set-

complement of J s KT, that is, JÛs KT = VT\J s KT. In this case, we say that the complement

is absolute. The compositional theory of linear constraints L has an absolute complement:

For instance, J ˇ�&sum{x; y} = 4 K = J &sum{x; y}! = 4 K = VL \ J &sum{x; y} = 4 K. Exam-

ples of non-absolute complements may arise when we deal, for instance, with multi-valued

logics (like Kleene’s or Lukasiewicz’) where we may have valuations that are not models

of a formula nor its complement (assuming we use negation for that role). Having an

absolute complement directly implies that the theory is consistent. This is because the

denotations J s KT and JÛs KT are disjoint, and so, any set including {s,Ûs} is T-unsatisfiable.

Proposition 2

For any compositional theory T = 〈T ,S,Û· 〉 with an absolute complement Û·, any S ⊆ T

and s ∈ T , we have that S |=T s iff (S ∪ {Ûs}) 6∈ S.

3.2 Transformation-based semantics revisited

With a firm definition of what constitutes a theory T, we can now make precise the

definition of a T-solution and T-stable model of a T -logic program given in (3). For

clarity, we refine those definitions by further specifying the subset of external theory

atoms in E : Given an abstract theory T = 〈T ,S,Û· 〉 and a set E ⊆ T of external theory

atoms, we define S ∈ S as a 〈T, E〉-solution, if S ∪ (Ĕ \ S) is T-satisfiable. This set

Ĕ \ S acts as a “completion” of S, adding all complement atoms Ûs for every external

atom s that does not occur explicitly in S. Sometimes, this completion does not add

any atom to S: this happens when, for each external s ∈ E , either s ∈ S, Ûs ∈ S or

both. We say that a set of theory atoms S is E-complete if S ∪ (Ĕ \ S) = S and E-

incomplete otherwise. For instance, consider an abstract theory from L with the theory

atoms T = {s1, s2, s3, s4} with s1 = (&sum{x; y} = 4), s2 = (&sum{y; z} = 2) given

8 Pedro Cabalar et al

above, plus s3 = (&sum{x; y}! = 4), s4 = (&sum{y; z}! = 2), so that (s1, s3) and (s2, s4)

are pairwisely complementary. Suppose we only have one external atom E = {s1}. Then

set S = {s2} is E-incomplete since S ∪ (Ĕ \ S) = {s2, Ùs1} = {s2, s3} is completed with

s3. On the other hand, set S = {s1, s2} is E-complete because we do have information

about the external atom s1, and so, Ĕ \ S does not provide any additional information.

The next result shows that E-complete solutions suffice when considering the existence

of solution:

Proposition 3

Let T = 〈T ,S,Û· 〉 be an abstract theory and E ⊆ T be a a set of external atoms.

For any 〈T, E〉-solution S ⊆ T , we have:

1. S′ = S ∪ (Ĕ \ S) is E-complete and S′ is also a 〈T, E〉-solution.
2. If S is E-complete, then S is T-satisfiable.

For consistent theories, completing a set S with Ĕ \ S may be convenient for any external

atom s whose complement Ûs is not external, as happened with s1 = (&sum{x; y} = 4) ∈ E

and Ùs1 = (&sum{x; y}! = 4) 6∈ E in our previous example. However, if the complement,

in its turn, is also external and not in S, then we also complete S with ÛÛs = s, and so, the

completed set is inconsistent. If, additionally, E is closed, it contains all the complements

of its elements, and so:

Proposition 4

Let T = 〈T ,S,Û· 〉 be a consistent abstract theory with a closed set of external atoms

E ⊆ T . Then, all 〈T, E〉-solutions S ⊆ T are E-complete.

Back to our example, if we take now E = {s1, s3} as external atoms, note that this set

is closed since Ùs1 = s3 and Ùs3 = s1. The only possibility for an E-incomplete solution S

would be that none of these two atoms were included in S. But then, we would have

to complete with Ĕ \ S = {s1, s3} and the result would be inconsistent, since these two

atoms complement one another.

In analogy to Section 2, a set X ⊆ A ∪ T of atoms is a 〈T, E〉-stable model of a T -

logic program P , if there is some 〈T, E〉-solution S such that X is a stable model of the

program in (3). As an illustration, take again clingcon-program P(4/5) with abstract

theory L, the already seen theory atoms T = {s1, s2, s3, s4}, and the closed subset of

external atoms E = {s1, s3}. This program has two 〈L, E〉-stable models:

X1 = {a, s1, s2} = {a,&sum{x; y}= 4,&sum{y; z} = 2} and

X2 = {s3} = {&sum{x; y}! = 4}

To verify X1, take the 〈L, E〉-solution {s1, s2} = {&sum{x; y} = 4,&sum{y; z} = 2} and

the resulting program transformation

a← &sum{x; y} = 4

&sum{y; z} = 2← a (7)

&sum{x; y} = 4←

We see that X1 is a stable model of the logic program and, as such, also a 〈L, E〉-stable

model. Similarly, with 〈L, E〉-solution {s3} = {&sum{x; y}! = 4}, we get program

a← &sum{x; y} = 4

Towards a Semantics for Hybrid ASP systems 9

&sum{y; z} = 2← a

&sum{x; y}! = 4← (8)

← &sum{y; z} = 2

← &sum{y; z}! = 2

Again, we have X2 as a stable model, confirming it as a 〈L, E〉-stable model. Notice that,

in this case, the 〈T, E〉-solution {s1} is not unique: We could have also freely added any

of the two founded atoms s3 = (&sum{y; z} = 2) or s4 = (&sum{y; z}! = 2) so that one

of their respective constraints (the last two lines in the program above) would not be

included in each case. This shows that, for founded theory atoms not derived by any rule,

the represented linear equation, its complement, or none of the two are free to hold.

3.3 AMT semantics based on HTc

We now present a direct encoding of a T -logic program P as an HTc theory. This encoding

is “direct” in the sense that it preserves the structure of P rule by rule and atom by atom,

only requiring the addition of a fixed set of axioms, one per each external atom. As a

first step, we start embodying compositional structured theories in HTc. To this end,

we observe that the definitions of structured theories T and HTc deal with quite similar

concepts (viz., a domain, a set of variables, valuation functions, and denotations for

atoms). So, in principle, it seems reasonable to establish a one-to-one correspondence.

However, the generality of HTc allows us to go further by tolerating different abstract

theories in the same formalization. For this reason, when we encode a compositional

theory T = 〈T ,S,Û· 〉 with a structure (XT,DT, varsT, J · KT) into an HTc theory over

a signature 〈X ,D, C〉, we just require XT ⊆ X and DT ∪ {t} ⊆ D, so that the HTc

signature may also include variables and domain values other than the ones in T. In

particular, we assign the value t to propositional variables that are true. We then map

each abstract theory atom s ∈ T into a corresponding HTc-constraint atom τ(s) ∈ C

with vars(τ(s)) = varsT(s). We also require that the HTc denotation satisfies:

J τ(s) K def= {v ∈ VX ,D | ∃w ∈ J s KT, v|vars(τ(s)) = w|
varsT(s)} (9)

Note that HTc valuations v ∈ VX ,D are applied to a (possibly) larger set of variables

X ⊇ XT but also range on a larger set of domain values Du ⊃ DT, including the element

u 6∈ DT to represent HTc-undefined variables. The denotation J τ(s) K collects all possible

HTc-valuations that coincide with some T-valuation w ∈ J s KT on the atom’s variables

varsT(s), letting everything else vary freely. We write τ(S) for {τ(s) | s ∈ S} for S ⊆ T .

A first interesting result shows that this mapping of denotations preserves T-satisfiability:

Proposition 5

Given a compositional theory T = 〈T ,S,Û· 〉, a set S ⊆ T of theory atoms is T-satisfiable

iff τ(S) is satisfiable in HTc.

Let us now consider a compositional theory T in a T -logic program P over 〈A, T , E〉

where A is a set of propositional atoms and E ⊆ T a subset of external theory atoms. As

with atoms in T , we also encode each propositional atom a ∈ A as an HTc-constraint

atom τ(a) def= “pa = t” in C, assuming we have a variable pa ∈ X for each a ∈ A.

10 Pedro Cabalar et al

We write τ(P) to stand for the atom-level translation of a T -logic program P . That

is, τ(P) is a theory containing one implication

τ(b1) ∧ · · · ∧ τ(bn) ∧ ¬τ(bn+1) ∧ · · · ∧ ¬τ(bm)→ τ(b0) (10)

for each rule r ∈ P of form (2). Additionally, when b0 = ⊥ in (10), the atom translation

is simply τ(⊥) def= ⊥. The complete translation of T -logic program P over 〈A, T , E〉 for

compositional theory T (as defined above) into HTc is denoted as τ(P,T, E) and given

by the union of τ(P) plus a formula

τ(s) ∨ τ(Ûs) for each external theory atom s ∈ E . (11)

Theorem 1 (Main Result)

Given a T -logic program P over 〈A, T , E〉 with E closed, and a consistent, compositional

theory T = 〈T ,S,Û· 〉, there is a one-to-many correspondence between the 〈T, E〉-stable

models of P and the equilibrium models of τ(P,T, E) in HTc such that X is a 〈T, E〉-

stable model of P iff there exists an equilibrium model 〈t, t〉 of theory τ(P,T, E) that

satisfies

X =
{

b ∈ A ∪ E | t ∈ J τ(b) K
}

∪
{

s ∈ F | (B → s) ∈ P and 〈t, t〉 |= τ(B)
}

(12)

where τ(B) stands for the result of applying τ to all atoms occurring in conjunction B.

The semantics of a T -logic programP is then given by the equilibrium models of τ(P,T, E)

in HTc. Theorem 1 states that this semantics remains faithful to the program transfor-

mation. Intuitively, formulas like (10) capture the rules in the T -logic program and are

used for the same purpose, that is, to decide which founded atoms from T \ E can be

eventually derived. Furthermore, due to the minimization imposed to obtain an equilib-

rium model 〈t, t〉, if a founded atom s is not derived (that is, 〈t, t〉 6|= τ(s)), then all its

variables x ∈ varsT(s) not occurring in external atoms are left undefined, t(x) = u. On

the other hand, the axiom (11) for external atoms s ∈ E acts as a stronger version of the

usual choice construct τ(s) ∨ ¬τ(s) in HT. That is, we can freely add τ(s) or not but,

when the latter happens, we further provide evidence for the complement τ(Ûs).

As an example, take theory L with structure (XL,DL, varsL, J · KL), and assume that we

represent each linear equation e = &sum{k1 ∗ x1 ; . . . ; kn ∗ xn} ≺ k0 as the HTc constraint

atom τ(e) = “k1 · x1 + · · ·+ kn · xn ≺ k0” with the following denotation:

J τ(e) K = {v ∈ VX ,D | v
′ ∈ J e KL, v|vars(τ(e)) = v′|

varsL(e)}

= {v ∈ V | {k1, v(x1), . . . km, v(xm)} ⊆ Z,
∑

1≤i≤n ki · v(xi) ≺ k0} (13)

where≺ is associated with its standard mathematical relation. Essentially, the denotation

selects the variables that are relevant to theory L and the linear equation atom e, and

then applies the denotation J e KL given by the structure. Then, in our clingcon-program

P(4/5), defining the external atoms E as {(&sum{x; y} = 4), (&sum{x; y}! = 4)}, produces

the HTc theory τ(P(4/5),L, E) containing

x+ y = 4→ pa, (14)

pa → y + z = 4, (15)

(x+ y = 4) ∨ (x+ y 6= 4) (16)

Towards a Semantics for Hybrid ASP systems 11

where (16) corresponds to the choice (11) for the external atoms. Interestingly, in the

setting of clingcon-programs, we can replace choices as in (11) on external atoms by

disjunctions of constraints for their variables, forcing them to take any arbitrary integer

value. In our example, we can replace (16) by the disjunctions of L-atoms:

x ≥ 0 ∨ x < 0 (17)

y ≥ 0 ∨ y < 0 (18)

These formulas are no tautologies: They assign any arbitrary pair of integer values to the

variables x and y. To conclude with the example, the theory τ(P(4/5),L, E) has an infinite

number of equilibrium models 〈t, t〉 that satisfy one of the two following conditions:

1. t(pa) = t, {t(x), t(y), t(z)} ⊆ Z, t(x) + t(y) = 4 and t(y) + t(z) = 4, or

2. t(pa) = u, t(z) = u, {t(x), t(y)} ⊆ Z and t(x) + t(y) 6= 4.

4 Answer Set Solving modulo Linear Equations

Finally, we show how our formalism can be used to capture the semantics of several

clingo extensions with linear equations. At first, we use the structured theory L to

describe a semantics of clingcon using HTc-theories. Then, we introduce structured

theories D and R to analogously capture clingo[dl] and clingo[lp]. Among others, this

allows us to compare the systems and show strongly equivalent program transformations.

We start by introducing a useful constraint atom def
Z
(x) ∈ C to represent the fact that

a given variable x ∈ X has a defined, integer value, viz. J def
Z
(x) K = {v ∈ V | v(x) ∈ Z}.

It is not difficult to see that J def
Z
(x) K is HTc equivalent to (17).

Proposition 6

Let P be a T -logic program over 〈A, T , E〉 wrt theory L = 〈T ,S,Û· 〉 structured by

(XL,DL, varsL, J · KL), then the following three theories are strongly equivalent:

• τ(P,L, T),

• τ(P) ∪ {τ(s) ∨ ¬τ(s) | s ∈ E} ∪ {def
Z
(x) | x ∈ varsL(s), s ∈ E}, and

• τ(P) ∪ {def
Z
(x) | x ∈ varsL(s), s ∈ E}

In essence, this means that the choice (11) in τ(P,L, T) can be safely replaced by a set of

constraint atoms def
Z
(x) for every variable x that occurs in at least one external atom.

As an interesting result, we may observe that constraint atoms involving defined vari-

ables can always be rephrased as formulas in the scope of negation:

Proposition 7

Let Γ be a HTc theory over signature 〈X ,D, C〉 with a denotation for linear constraint

atoms denoted as defined (13) and let c = “k1 · x1 + · · · + kn · xn ≺ k0” ∈ C and

Ûc = “k1 ·x1 + · · ·+kn ·xnÙ≺k0” ∈ C be two linear constraint atoms such that Γ |= def
Z
(xi)

for i = 1 . . . n. Then, the following strongly equivalent transformations hold:

• Γ |= c↔ ¬¬c,

• Γ |= c↔ ¬Ûc,

• Γ |= (F → c)↔ (F → ¬¬c),

• Γ |= (F → c)↔ (F ∧ ¬c→ ⊥), and

• Γ |= (F → c)↔ (F ∧ Ûc→ ⊥)

12 Pedro Cabalar et al

In clingcon, all atoms are external E = T and may indistinctly occur in the head or

in the body. To illustrate the behavior of this system, let us analyze the effect on our

running example P(4/5). Since atom y + z = 2 is also external now, the translated HTc

theory τ(P,L, T) would simply add the axiom:

(y + z = 2) ∨ (y + z 6= 2) (19)

to the previously obtained formalization (14)-(16). According to Proposition 6, we can

even rephrase this theory as {(14), (15)} ∪ {def
Z
(x), def

Z
(y), def

Z
(z)}, that is, replacing

the choices by constraint atoms that force all variables to be assigned some integer value.

As a result, the equilibrium models 〈t, t〉 always satisfy {t(x), t(y), t(z)} ⊆ Z plus one of

these two conditions:

• t(x) + t(y) = 4, t(z) + t(y) = 2, and t(pa) = t

• t(x) + t(y) 6= 4, and t(pa) = u

Both atoms x+ y = 4 and y+ z = 2 are external. When x+ y = 4 holds, rule (14) forces

pa to be true and rule (15) further implies y+z = 2. For the second item, when x+y = 4

does not hold, then its complement x + y 6= 4 becomes true and y + z = 2 is also free

to hold or not as in (19). However, since y and z are always assigned some integer value,

this choice becomes tautological and does not impose any additional restriction on those

variables. On the other hand, there is no reason to derive pa and so it is left undefined

(the corresponding program atom a does not hold).

One interesting feature of clingcon is that it not only shows the 〈L, T 〉-stable models

but also allows enumerating variable assignments for that stable model. For instance, for

P(4/5), and a ∈ X in the stable model, we may get {x = 2, y = 2, z = 0}, {x = 3, y =

1, z = 1}, {x = 4, y = 0, z = 2}, etc. When considering these witnesses, we actually

obtain a one-to-one correspondence to the equilibrium models of the HTc translation

τ(P,L, T).

Since, in clingcon, all variables are defined (def
Z
(x) for all x ∈ XL), we can always

apply Proposition 7 to constraint atoms in the head and shift them to the body. As an

example, we can safely replace rule (5) in program P(4/5) by any of the two constraints

below, that are equivalent when all variables are defined:

⊥ ← ¬&sum{y; z} = 2, a (20)

⊥ ← &sum{y; z}! = 2, a (21)

To cover clingo[dl]-programs, we introduce abstract theory D capturing difference

constraints over integers, which is a subset of the already seen abstract theory L where

theory atoms have the fixed form &sum{1 ∗ x ; (−1) ∗ y} <= k but rewritten instead as:

&diff{x − y} <= k (22)

where x and y are integer variables and k ∈ Z.

As we have in L, the complement (̄22) is absolute and, in this case, it is not difficult

to see that its denotation corresponds to:

J (̄22) KD = J &diff{y − x} <= −k − 1 KD

In clingo[dl], body atoms are external E and head atoms founded T \ E . In this case,

Towards a Semantics for Hybrid ASP systems 13

we have a one-to-one correspondence between the answers of the system and the 〈D, E〉-

stable models of a clingo[dl]-logic program P .

Although, in clingo[dl], we may have undefined variables, Proposition 7 is still ap-

plicable if the variables in the head atom are used in other external atoms. To put an

example, take the clingo[dl]-program

margin ← &diff{x − y} <= 10 (23)

&diff{x − y} <= 0 ← ¬margin (24)

&diff{y − x} <= 0 ← ¬margin (25)

that says that we have some margin when picking values with x− y ≤ 10, but we force

x = y if there is no such margin. Under the assumption of external body atoms, this

program is strongly equivalent to:

margin ← &diff{x − y} <= 10

⊥ ← &diff{y − x} <= −1 , ¬margin

⊥ ← &diff{x − y} <= −1 , ¬margin

since variables x and y occur in an external (body) atom &diff{x − y} <= 10 , and so,

they are always defined. Our HTc formalization can be exploited now to prove other

strong equivalence relations whose proof was non-trivial before. For instance, we can

prove that adding the rule

&diff{z − y} <= 20 ← ¬margin

to the clingo[dl]-program (23)-(25) is strongly equivalent to adding instead the rule

&diff{z − x} <= 20 ← ¬margin

where we use x rather than y in the head, since these two variables are always defined

and ¬margin forces them to be equal.

A third AMT system covered by our formalization is clingo[lp]. In this case, the

abstract theory R is about linear equations over reals. It is identical to L but structured

by (XR,DR, varsL, J · KL) where XR is an infinite set of real variables and the domain DR

is the set of real numbers R. clingo[lp] treats either all theory atoms as external, E = T ,

or founded, E = ∅. Since it imposes no restriction on the occurrence of linear equation

atoms, the counter-intuitive behavior identified by Janhunen et al. (2017) may emerge.

However, once we treat head atoms as founded and body atoms as external, we obtain

a one-to-one correspondence between the answers of the system and the 〈R, E〉-stable

models of a clingo[lp]-logic program P ; and a one-to-many correspondence between its

answers and the equilibrium models of τ(P,R, E) for a clingo[lp]-logic program P .

5 Discussion

Apart from the hybrid ASP approaches mentioned in the introduction, the closest work to

ours is probably ASP(AC), recently introduced by Eiter and Kiesel (2020), since it also

relies on an extension of the logic HT to deal with hybrid logic programs. But while HTc

keeps the simple basis of propositional HT by treating an external theory as a black-box

(as we have seen, the minimum requirement is using variables and denotations), ASP(AC)

14 Pedro Cabalar et al

defines a complete extension of the logic itself, lifting the formalism to first-order HT with

weighted formulas over semi-rings. The main advantage of ASP(AC) is that both the

external theories and the logic programs are captured by a same homogeneous formal

basis. The price to be paid with respect to HTc is a more complex semantics (logical

operators become just one more type of constraints) and the requirement of a semi-ring

structure. Still, ASP(AC) covers a wide range of constructs such as aggregates over non-

Boolean variables, linear constraints or provenance in positive datalog programs.

Our formal characterization provides several valuable contributions. The most obvious

benefit is that we have now a roadmap to follow, not only when deciding new aspects of

existing AMT systems, but also when reconsidering parts of their implementation that

were originally designed with no clear hint when facing design alternatives. This will have

an immediate impact on the next generation of existing AMT systems like clingcon,

where head atoms will start to be considered as founded, and clingo[lp], that will also

accordingly introduce an implicit separation between head atoms as founded and body

atoms as external. A second important contribution is that, when proving our results,

we have tried to maintain the highest possible degree of generality in the description

of the abstract theories used behind. This paves the way for introducing new abstract

theories: We may now start classifying them in terms of the general properties, identified

in the paper (consistency, structure and denotation, closed set of external atoms, absolute

complement, etc), so that we can characterize their behavior via HTc formulas.

Apart from the alignment of existing implementations and the introduction of new

abstract theories, our future work includes a comparison and investigation of other

approaches, like the aforementioned (Eiter and Kiesel 2020), and other approaches to

AMT (Bartholomew and Lee 2014; Lierler and Susman 2016) or plain SMT (Barrett et al. 2009)

in view of their formal characterization in terms of HTc.

References

Barrett, C., Sebastiani, R., Seshia, S., and Tinelli, C. 2009. Satisfiability modulo theories.
In Handbook of Satisfiability, IOS Press, Chapter 26, 825–885.

Bartholomew, M. and Lee, J. 2014. System aspmt2smt: Computing ASPMT theories by
SMT solvers. In Proc. JELIA’14, Springer, 529–542.

Cabalar, P., Fandinno, J., Schaub, T., and Wanko, P. 2020a. An ASP semantics for
constraints involving conditional aggregates. In Proc. ECAI’20, IOS Press, 664–671.

Cabalar, P., Kaminski, R., Ostrowski, M., and Schaub, T. 2016. An ASP semantics for
default reasoning with constraints. In Proc. IJCAI’16, IJCAI/AAAI Press, 1015–1021.

Carro, M. and King, A., Eds. 2016. Techn. Comms. ICLP’16 OASIcs.

Eiter, T., Germano, S., Ianni, G., Kaminski, T., Redl, C., Schüller, P., and Weinzierl,

A. 2018. The DLVHEX system. Künstliche Intelligenz 32, 2-3, 187–189.

Eiter, T. and Kiesel, R. 2020. ASP(AC): Answer set programming with algebraic constraints.
Theory and Practice of Logic Programming 20, 6, 895–910.

Falkner, A., Friedrich, G., Schekotihin, K., Taupe, R., and Teppan, E. 2018. Industrial
applications of answer set programming. Künstliche Intelligenz 32, 2-3, 165–176.

Gebser, M., Harrison, A., Kaminski, R., Lifschitz, V., and Schaub, T. 2015. Abstract
Gringo. Theory and Practice of Logic Programming 15, 4-5, 449–463.

Gebser, M., Kaminski, R., Kaufmann, B., Ostrowski, M., Schaub, T., and Wanko, P.

2016. Theory solving made easy with clingo 5. See Carro and King (2016), 2:1–2:15.

Towards a Semantics for Hybrid ASP systems 15

Gelfond, M. and Lifschitz, V. 1988. The stable model semantics for logic programming. In
Proc. ICLP’88, MIT Press, 1070–1080.

Janhunen, T., Kaminski, R., Ostrowski, M., Schaub, T., Schellhorn, S., Wanko, P.

2017. Clingo goes linear constraints over reals and integers. TPLP 17, 5-6, 872–888.

Kaminski, R., Schaub, T., and Wanko, P. 2017. A tutorial on hybrid answer set solving with
clingo. In Proc. RW’17 Springer, 167–203.

Lierler, Y. 2014. Relating constraint answer set programming languages and algorithms.
Artificial Intelligence 207, 1–22.

Lierler, Y. and Susman, B. 2016. SMT-based constraint answer set solver EZSMT (system
description). See Carro and King (2016), 1:1–1:15.

Lifschitz, V. 2010. Thirteen definitions of a stable model. Fields of Logic and Computation,
Springer, 488–503.

Pearce, D. 1997. A new logical characterisation of stable models and answer sets. In
Proc. NMELP’96, Springer, 57–70.

16 Pedro Cabalar et al

Appendix A Proofs of results

A.1 Proofs of Propositions 1-5

Proof of Proposition 1

By construction, for every L-satisfiable set S ∈ S, we have
⋂

s∈SJ s KL 6= ∅. Then, there

exists a valuation v ∈
⋂

s∈SJ s KL and v ∈ J s KL for every s ∈ S. This implies that L is

compositional.

Let us show that L is consistent. Suppose, for the sake of contradiction, that there

exists a L-satisfiable set S ∈ S such that {s,Ûs} ∈ S for a s ∈ T . Then, since L is

compositional (as shown above), there has to exists a valuation v, such that v ∈ J s K and

v ∈ JÛs K. By definition of the denotation J · KT, this implies that v needs to satisfy both
∑

1≤i≤n ci ∗ v(xi) ≺ c0 and
∑

1≤i≤n ci ∗ v(xi)Ù≺c0, which is a contradiction. Therefore,

every L-satisfiable set S ∈ S is consistent and then L is consistent.

Proof of Proposition 2

Since T is compositional, proving (S ∪ {Ûs}) 6∈ S amounts to checking JS ∪ {Ûs} KT = ∅.

For the left to right direction, S |=T s is equivalent to JS KT ⊆ J s KT. But then

JS KT ∩ JÛs KT ⊆ J s KT ∩ JÛs KT = ∅ and so JS KT ∩ JÛs KT = JS ∪ {Ûs} KT = ∅.

For the right to left direction, we proceed by contraposition. Suppose there is some

v ∈ JS KT such that v 6∈ J s KT. If the complement is absolute, the latter means v ∈ JÛs KT
and so v ∈ JS KT ∩ JÛs KT = JS ∪ {Ûs} KT and so JS ∪ {Ûs} KT 6= ∅.

Proof of Proposition 3

It is enough to show that

(S ∪ (Ĕ \ S)) ∪ (
ˇ�

E \ (S ∪ (˘)E \ S) = (S ∪ (Ĕ \ S))

Note that Ȧ ∪B = ÛA ∪ ÙB and Ă \B = ÛA \ ÙB. Then,

(
ˇ�

E \ (S ∪ (˘)E \ S) = (ÛE \ (ÛS ∪ (
ÙÙE \
ÙÙS))

Pick a ∈ (ÛE \ (ÛS ∪ (
ÙÙE \
ÙÙS)). Then, a ∈ ÛE and a /∈ (ÛS ∪ (

ÙÙE \
ÙÙS)). The latter implies that

a /∈ ÛS. Hence, a ∈ ÛE \ ÛS = Ĕ \ S.

Then, we have that S is a 〈T, E〉-solution implies S∪(Ĕ \ S) is T-satisfiable by definition.

Due to (S ∪ (Ĕ \ S)) ∪ (
ˇ�

E \ (S ∪ (˘)E \ S) = (S ∪ (Ĕ \ S)), we know that S ∪ (Ĕ \ S) is

E-complete and (S ∪ (Ĕ \ S)) ∪ (
ˇ�

E \ (S ∪ (˘)E \ S) is also T-satisfiable, then (S ∪ (Ĕ \ S))

is a E-complete 〈T, E〉-solution.

Conversely, if S is a E-complete 〈T, E〉-solution, then S ∪ (Ĕ \ S) = S is T-satisfiable

by definition of E-complete and 〈T, E〉-solution.

Proof of Proposition 4

Suppose, for the sake of contradiction, that there exists an incomplete 〈T, E〉-solution S.

Then, S 6= S∪˚�(E \ S) and, thus, there exists a theory atom s ∈˚�(E \ S) with s ∈ ÛE , s /∈ ÛS

and s /∈ S. Furthermore, s ∈ ÛE implies {s,Ûs} ⊆ E since E is closed. Then, Ûs ∈˚�(E \ S)

Towards a Semantics for Hybrid ASP systems 17

since s /∈ S and s ∈ E . This leads to a contradiction because {s,Ûs} ⊆˚�(E \ S), and

therefore S ∪˚�(E \ S) is not T-satisfiable. Since T is consistent, this implies that S not a

〈T, E〉-solution, which is a contradiction with the assumption that S is a 〈T, E〉-solution.

Consequently, all 〈T, E〉-solutions S are E-complete for consistent abstract theory T and

closed E .

Proof of Proposition 5

Since T is compositional, set S is T-satisfiable iff there is a valuation w : XT → DT such

that w ∈ J s KT for all s ∈ S.

• Assume first that S is T-satisfiable and, thus, that there is a valuation w : XT → DT

such that w ∈ J s KT for all s ∈ S. Let v : X → Du be any valuation such that v(x) =

w(x) for all x ∈ XT. Then, w ∈ J s KT implies v ∈ J τ(s) K and, therefore, we get

that τ(S) is satisfiable in HTc.

• Conversely, if τ(S) is satisfiable in HTc, then there is a valuation v that satis-

fies v ∈ J τ(s) K for all s ∈ S. By construction, this implies that there is some

valuation w : XT → DT such that w ∈ J s KT for all s ∈ S. Consequently, S is

T-satisfiable.

A.2 Proofs of the Main Theorem

To pave the way between the transformation approach described in Section 3.2 and the

translation in HTc described in Section 3.3, we introduce a second translation into HTc

that is close to the transformation approach. The proof of the Main Theorem is then

divided into two main lemmas: the first establishes the correspondence between the trans-

formation approach described in Section 3.2 and this second translation, and the second

establishes the correspondence in HTc between both translations.

Let us start by describing this second translation that we denote τ2. The most relevant

feature of this translation is that it decouples the generation of possible abstract theory

solutions S ⊆ T from the derivation of their atoms s ∈ S in the logic program. In partic-

ular, rather than directly including constraints τ(s) in the translation of program rules

as done with (10), we use now a new, auxiliary propositional atom ps whose connection

to the constraint τ(s) is be explicitly specified by using additional formulas. In that way,

the rules of the T -logic program P will correspond now to an HTc encoding of a regular,

propositional logic program we call p(P).

Translation τ2 produces an HTc-theory with signature 〈X2,D2, C2〉 and denotation J · K2
that extends the signature 〈X ,D, C〉 and denotation J · K of τ as follows:

X2 = X ∪ { ps | s ∈ T } (A1)

D2 = D (A2)

C2 = C ∪ { “ps = t” | s ∈ T } (A3)

that is, we extend the set of variables X with one fresh variable ps for each abstract theory

atom s ∈ T and the constraints C with the corresponding propositional constraint atom

“ps = t”. The denotation J · K for the τ2 translation simply extends the denotation for

18 Pedro Cabalar et al

τ by including the already seen fixed denotation for propositional atoms applied to the

new constraints “ps = t”.

The new HTc-encoding τ2(P,T, E) is defined for a same T -logic program P over

〈A, T , E〉 as before, but consists of three sets of formulas:

τ2(P,T, E) def= Φ(T, E) ∪ p(P) ∪ Bridge(P,T, E) (A4)

where, informally speaking: Φ(T, E) generates arbitrary sets of abstract theory solutions

in terms of constraints τ(s); p(P) corresponds to an HTc-encoding of a propositional

program for atoms ps; and Bridge(P,T, E) fixes the connection between each atom ps
and its corresponding constraint τ(s).

We describe now each one of these three sets. Theory Φ(T, E) consists of formulas

τ(s) ∨ ¬τ(s) for every theory atom s ∈ T (A5)

¬τ(s)→ τ(Ûs) for every theory atom s ∈ E (A6)

Here, the truth of constraint atom τ(s) for s ∈ T describes the inclusion of s in a

possible 〈T, E〉-solution S. If τ(s) is true or false, it represents that s ∈ S or s 6∈ S,

respectively. The choice in (A5) generates all possible sets S. Implication (A6) enforces

that, whenever an external theory atom is not included in the set s 6∈ S, its complement

must hold Ûs ∈ S. Note that no atom of the form ps occurs in Φ(T, E). Therefore, any

equilibrium model 〈t, t〉 of Φ(T, E) satisfies t(ps) = u.

Back to our example, given the L atoms T = {s1, s2, s3, s4} with s1 = (&sum{x; y} = 4),

s2 = (&sum{y; z} = 2), s3 = (&sum{x; y}! = 4), s4 = (&sum{y; z}! = 2) seen before,

where s1 and s3 are external, and given the τ(s) translation for L atoms, the theory

Φ(L, E) would amount to:

x+ y = 4 ∨ ¬(x + y = 4) (A7)

y + z = 2 ∨ ¬(y + z = 2) (A8)

x+ y 6= 4 ∨ ¬(x + y 6= 4) (A9)

y + z 6= 2 ∨ ¬(y + z 6= 2) (A10)

¬(x + y = 4)→ (x+ y 6= 4) (A11)

¬(x + y 6= 4)→ (x+ y = 4) (A12)

Notice the difference between the explicit difference in atoms F 6= 4 and the default

negation of an equality in literals ¬(F = 4). The former hold when all variables in F

are defined, but F is not 4, whereas the latter still hold even when some variable in F is

undefined.

For brevity, we may refer in the following to an equilibrium model 〈t, t〉 of a theory

Γ instead as a stable model t of theory Γ, and say t |= Γ instead of 〈t, t〉 |= Γ for total

interpretation 〈t, t〉.

The behavior of Φ(T, E) is formally characterized by the following result:

Proposition 8

Given a consistent, compositional abstract theory T = 〈T ,S,Û· 〉 and a closed set E ⊆ T of

external theory atoms, there is a one-to-many correspondence between the set of complete

〈T, E〉-solutions and the stable models of Φ(T, E) such that

• if t is a stable model of Φ(T, E), then {s ∈ T | t |= τ(s)} is a complete 〈T, E〉-solution;

Towards a Semantics for Hybrid ASP systems 19

• if S is a complete 〈T, E〉-solution, then there exists a stable model t of theory Φ(T, E)

such that S = {s ∈ T | t |= τ(s)}.

Note that the correspondence is not one-to-one because, for a same 〈T, E〉-solution

S, we may get several (even infinite) variable assignments that satisfy the same con-

straint atoms. For instance, for a 〈T, E〉-solution just consisting of linear constraint

atom &sum{x} > 3, we will get one stable model t with t(x) = n for each integer n ∈ Z

strictly greater than 3.

As we can see (A4), the second group of formulas in τ2(P,T, E) is p(P) which, as we

did with (10), will perform an atom-level translation to all rules in P . In this case, the

novelty comes in the translation for theory atoms s ∈ T , defined as τ2(s) def= ps, while

regular atoms and ⊥ are translated as before, namely, τ2(a) def= τ(a) = pa for a ∈ A

and τ2(⊥) def= ⊥. Then, p(P) is the result of replacing the atom translation τ by τ2 in

the formula (10) for each rule (2) in P . As an illustration, given our L example with

atoms T = {s1, s2, s3, s4} suppose, for the sake of readability, we just write τ(si) = pi
for i = 1 . . . 4. Then p(P(4/5)) would just consist of the two implications:

p1 → pa (A13)

pa → p2 (A14)

The third group of formulas in τ2(P,T, E) is the theory Bridge(P,T, E) defined as:

τ(s)→ ps for each s ∈ E (A15)

¬τ(s) ∧ ps → ⊥ for each s ∈ T \ E (A16)

As we can see, the implication for external atoms (A15) is quite straightforward: it forces

the propositional atom ps to be true when the corresponding constraint holds. In the

case of founded theory atoms, T \ E , our HTc theory may not provide justification but

their truth has to be aligned with the truth of the constraint in a 〈T, E〉-solution. This

is handled via the integrity constraints in (A16), forbidding ps to hold if τ(s) is false. In

our L-program example, Bridge(P(4/5),L, E) would correspond to:

x+ y = 4→ p1 (A17)

x+ y 6= 4→ p3 (A18)

¬(y + z = 2) ∧ p2 → ⊥ (A19)

¬(y + z 6= 2) ∧ p4 → ⊥ (A20)

so that, our final translation τ2(P(4/5),L, E) amounts to the set of formulas {(A7) −

(A12)} ∪ {(A13), (A14)} ∪ {(A17) − (A20)}. As we can see, this is much more verbose

than τ(P(4/5),L, E) = {(14) − (16)}, but has the advantage of being structurally closer

to the program transformation in (3), so its correctness has a more direct proof.

As we mentioned above, Φ(T, E) generates arbitrary sets of abstract theory solutions

in terms constraints τ(s) that is bridge with p(P) to produce the stable models. This

separation can be made precise using the splitting result by (Cabalar et al. 2020b, Propo-

sition 12). Proposition 9 below makes this intuition precise. To this end, we need the

following notation. We define Γ(P,T, E) = p(P) ∪ Bridge(P,T, E), that is, the two sets

of formulas in (A4) dealing with propositional variables ps. Given a fixed valuation t,

we further define Γ(P,T, E , t) as the result of replacing in Γ(P,T, E) every constraint

20 Pedro Cabalar et al

atom c ∈ C by ⊤ if t ∈ J c K and ⊥ otherwise. Let us further denote p(A∪T) ⊆ X2 as the

set of all auxiliary propositional variables: p(A∪T) def= {pa | a ∈ A}∪ {ps | s ∈ T }. Note

that C ⊆ C2 refers to the constraint atoms in τ, and so, C ∩ p(A ∪ T) = ∅.

Proposition 9

Given a T -logic program P over 〈A, T , E〉 such that E is a closed; a consistent, composi-

tional abstract theory T = 〈T ,S,Û· 〉; t is a stable model of τ2(P,T, E) iff t|X is a stable

model of Φ(T, E) and t| p(A∪T) is a stable model of Γ(P,T, E , t).

The following two results make the needed connections between this translation, the

program transformation and the other translation.

Proposition 10

Given a T -logic program P over 〈A, T , E〉 such that E is closed; a consistent, composi-

tional abstract theory T = 〈T ,S,Û· 〉, there is a one-to-many correspondence between the

〈T, E〉-stable models of P and the stable models of theory τ2(P,T, E) such that

• if v is an stable model of τ2(P,T, E), then {s ∈ A∪T | v ∈ J ps K} is a 〈T, E〉-stable

model of P .

• if X is a 〈T, E〉-stable model of P , then there exists a stable model v of τ2(P,T, E)

such that v|p(A∪T) = {(pb, t) | b ∈ X},

Proposition 11

Given a T -logic program P over 〈A, T , E〉 such that E is a closed; a consistent, composi-

tional abstract theory T = 〈T ,S,Û· 〉; if t and v are two valuations such that

v = t ∪ {(ps, t) | s ∈ E and t ∈ J τ(s) K}

∪ {(ps, t) | s ∈ F , (B → s) ∈ P and t |= τ(B)}

then t is a stable model of theory τ(P,T, E) iff v is a stable model of theory τ2(P,T, E).

Proof of the Main Theorem

Assume that t is a stable model of τ(P,T, E). Then, from Proposition 11, v is a stable

model of τ2(P,T, E). From Proposition 10, this implies that X = {b ∈ A∪T | v ∈ J pb K}

is a 〈T, E〉-stable model of P . Note that, by construction, v ∈ J pb K iff t ∈ J τ(b) K for

all b ∈ A ∪ E . Hence, (12) holds.

The other way around. Assume that X is a 〈T, E〉-stable model of P . Then, from Proposi-

tion 10, there exists a stable model v of τ2(P,T, E) such that v|p(A∪T) = {(pb, t) | b ∈ X}.

Hence, X = { b ∈ A∪T | v ∈ J pb K }. Furthermore, from Proposition 11, this also implies

that there there is a stable model t of τ(P,T, E) such that

v = t ∪ {(ps, t) | s ∈ E and t ∈ J τ(s) K}

∪ {(ps, t) | s ∈ F , (B → s) ∈ P and t |= τ(B)}

Hence, (12) holds.

The rest of this section is devoted to prove Propositions 8-11.

Proof of Propositions 8-9

Towards a Semantics for Hybrid ASP systems 21

Proof of Proposition 8

First statement. Assume that t be a stable model of Φ(T, E) and let

S = {s ∈ T | t ∈ J τ(s) K}

be a set of theory atoms. By construction, τ(S) is satisfiable in HTc and, from Proposi-

tion 5, this implies that S is T-satisfiable. Hence, it only remains to be shown that S is

complete. Note that, since t be a stable model of Φ(T, E), it follows that v satsifes all im-

plications of the form of (A6). Therefore, we get that every s ∈ E satisfies that v /∈ J τ(s) K

implies v ∈ J τ(Ûs) K. Then, we get

Ĕ \ S = {Ûs | s ∈ E and s /∈ S}

= {Ûs | s ∈ E and t /∈ J τ(s) K}

= {Ûs | s ∈ E and t ∈ J τ(Ûs) K} ⊆ S

Consequently, S = S ∪ Ĕ \ S and, since it is T-satisfiable and complete, it is a complete

T-solution.

Second statement. Assume that S is a complete T-solution. Then, S is T-satisfiable (Propo-

sition 3) and, thus, τ(S) is satisfiable in HTc (Proposition 5). This implies that there is

a valuations w : X −→ Du such that w ∈ J τ(s) K for all s ∈ S. Let t be a valuation such

that

• t(x) = w(x) if x ∈ varsT(s) for some s ∈ S,

• t(x) = u otherwise.

Then, v ∈ J τ(s) K holds for every s ∈ S. Note that w ∈ J s KT and t|
varsT(s) = w|

varsT(s)

for all s ∈ S. Therefore, t satisfies all formulas of the form of (A5) and it remains to

be shown that t also satisfies all formulas of the form of (A6). For that pick any theory

atom s ∈ E \ S.

• Since S is complete, we get that Ûs ∈ S.

• This implies that, t ∈ J τ(Ûs) K.

Therefore, v satisfies Φ(T, E).

Furthermore, for any valuation h ⊂ t, there is some theory atom s ∈ S and vari-

able x ∈ varsT(s) such that h(x) = u and, thus, h /∈ J τ(s) K. This implies 〈h, t〉 6|=

τ(s) ∨ ¬τ(s) (Proposition 3 by Cabalar et al. 2016) and, thus, that 〈t, t〉 is an equilib-

rium model of Φ(T, E).

Proof of Proposition 9

Set X is a splitting set of τ2(P,T, E) in the sense of Definition 10 by Cabalar et al. (2020b).

Note that every rule r ∈ Γ(P,T, E) satisfies vars(h(r)) ⊆ p(A ∪ T) and, thus, we get

vars(h(r)) ∩ X = ∅ for every r ∈ Γ(P,T, E)

Then, from Proposition 12 by Cabalar et al. (2020b), we get that v is a stable model

of τ2(P,T, E) iff v|X is a stable model of Φ(T, E) and v|p(A∪T) is a stable model of the

theory obtained from Γ(P,T, E) by replacing all variables in X by its value in v. After

trivial simplifications this amounts to Γ(P,T, E , v).

22 Pedro Cabalar et al

Proof of Proposition 10

Lemma 1

Let T = 〈T ,S,Û· 〉 be a complement-consistent, compositional abstract theory, let P

be a T -logic program over 〈A, T , E〉 such that E is closed. Let t : X2 −→ Du be a

valuation such that S = {s ∈ T | v ∈ J τ(s) K} is a complete 〈T, E〉-solution. Then,

X = {b ∈ A ∪ T | t ∈ J p(b) K} is a 〈T, E〉-stable model of P iff t|p(A∪T) is a stable model

of Γ(P,T, E , t).

Proof

From Proposition 2 by Cabalar et al. (2016) and Proposition 2 by Pearce (1997), set X

is a stable model of program (3) iff t| p(A∪T) is stable model of theory

p(P) ∪ {p(s) | s ∈ (E ∩ S)} ∪ {p(s)→ ⊥ | s ∈ (F \ S)} (A21)

Furthermore, it is easy to see that

X = {b ∈ A ∪ T | v ∈ J p(b) K} = {b ∈ A ∪ T | t|p(A∪T) ∈ J p(b) K}

Hence, it is enough to show that Γ(P,T, E , t) and (A21) have the same stable models.

For this, note that rules in Γ(P,T, E , t) can be separated in the following groups:

p(P)∪

{ ⊤ → p(s) | s ∈ E and t ∈ J τ(s) K} ∪

{ ⊥ → p(s) | s ∈ E and t /∈ J τ(s) K}} ∪

{¬⊤ ∧ p(s)→ ⊥ | s ∈ F and t ∈ J τ(s) K}}

{¬⊥ ∧ p(s)→ ⊥ | s ∈ F and t /∈ J τ(s) K}

which after some trivial simplifications amounts to the the strongly equivalent theory

p(P) ∪ {p(s) | s ∈ E and t ∈ J τ(s) K} ∪ {p(s)→ ⊥ | s ∈ F and t /∈ J τ(s) K}

Since S = {s ∈ T | t ∈ J τ(s) K}, it is easy to see that this is the same as (A21).

Proof of Proposition 10.

First statement. Assume that t is an stable model of τ2(P,T, E) and let

X = {s ∈ A ∪ T | t ∈ J p(s) K}

From Proposition 9, this implies that t|X is a stable model of Φ(T, E) and that t|p(A∪T)

is a stable model of Γ(P,T, E , t). From Proposition 8, the former implies that set S =

{s ∈ T | t ∈ J τ(s) K} is a complete 〈T, E〉-solution. From Lemma 1, this plus the the fact

that t| p(A∪T) is a stable model of Γ(P,T, E , t) implies that X is a 〈T, E〉-stable model

of P .

Second statement. Assume that X is a 〈T, E〉-stable model of P . Then, there exists a

complete 〈T, E〉-solution S, such that X is a stable model of program transformation (3)

of P wrt S. From Proposition 8, this implies that there exists a stable model w of Φ(T, E)

such that S = {s ∈ T | w ∈ J τ(s) K}.

Towards a Semantics for Hybrid ASP systems 23

Let t : X2 −→ Du be a valuation such that

t(x) =

w(x) if x ∈ X

t if x = ps for some s ∈ A ∪ T and s ∈ X

u if x = ps for some s ∈ A ∪ T and s /∈ X

Then, X = {s ∈ A ∪ T | t ∈ J p(s) K} and, from Lemma 1, we get that t|p(A∪T) is a stable

model of Γ(P,T, E , t). Note that, by construction, t|X = w|X . From Proposition 9, these

facts imply that t is a stable model of τ2(P,T, E).

Proof of Proposition 11

Lemma 2 (Completion of definitions)

Let Γ be a set of HTc-rules and let C be a set of constraint atom such that, for every c ∈ C,

there is some variable xc ∈ vars(c) that does not occur in a head of Γ nor in any

other atom in C. For each c ∈ C, let Fc be a a conjunction of literals that does not

contain any variables occurring in atoms from C. Then, theories Γ ∪ {Fc → c | c ∈ C}

and Γ ∪ {Fc ↔ c | c ∈ C} have the same stable models.

Proof

Let ΓI = Γ ∪ {Fc → c | c ∈ C} and ΓD = Γ ∪ {Fc ↔ c | c ∈ C}. Then, 〈h, t〉 |= ΓD

implies 〈h, t〉 |= ΓI for every interpretation 〈h, t〉.

Assume first that t is a stable model of ΓI . From the above observation, to show that t

is a stable model of ΓD, it is enough to prove that t is a model of ΓD. Then, we need

to show that t |= c → Fc for an arbitrary c ∈ C. Assume that t |= c. Then, v(xc) 6= u.

From Proposition 11 by Cabalar et al. (2020b) and the fact that Fc → c is the only

rule in ΓI where xc occurs in the head, this implies that t |= Fc and, therefore, we get

that t |= c→ Fc. Consequently, t is a stable model of ΓD.

Assume now that t is a stable model of ΓD. Then, t is a model of ΓI and to show that it

is also an stable model we need to show that 〈h, t〉 6|= ΓI for any h ⊂ t. Suppose, for the

sake of contradiction, that 〈h, t〉 |= ΓI holds for some h ⊂ t. Let h′ be a valuation such

that

h′(x) =

u if x = xc with c ∈ C and 〈h, t〉 6|= Fc

t(x) if x = xc with c ∈ C and 〈h, t〉 |= Fc

h(x) otherwise

By construction, 〈h′, t〉 |= Fc ↔ c for all c ∈ C because t |= Fc ↔ c. Furthermore,

〈h, t〉 |= ΓI implies 〈h, t〉 |= Γ and this implies 〈h′, t〉 |= Γ. Note that h′ only undefines

variables that cannot occur in head of Γ. Hence, 〈h′, t〉 |= ΓD and, since t is a stable

model of ΓD this implies that h′ = t. However, 〈h, t〉 |= ΓI hand h ⊂ t also imply

that 〈h, t〉 6|= ΓD and, thus, that 〈h, t〉 6|= c → Fc for some c ∈ C. This implies 〈h, t〉 |= c

and 〈h, t〉 6|= Fc. Therefore, h′(xc) = u and t(xc) 6= u, which is a contradiction with the

fact that h = t.

24 Pedro Cabalar et al

Lemma 3

Let P be a T -program over 〈A, T , E〉 such that no atom in E occur in a head of P . Let

τ3(P,T, E) be the theory

Φ(T, E) ∪ p′(P)

∪ {τ(s)↔ p(s) | s ∈ E}

∪ {p(s)→ τ(s) | s ∈ F} for F = T \ E .

where p′(P) is obtained from p(P) by replacing each occurrence of p(s) with s ∈ E

by τ(s). Then, theories τ2(P,T, E) and τ3(P,T, E) have the same stable models.

Proof

Note that by assumption no atom in E occur in a head in P . By construction, this

implies that no atom in p(E) occurs in a head of p(P) and, thus, no variable of the

form p(s) with s ∈ E occurs in a head p(P) nor Φ(T, E). Hence, from Lemma 2, we get

that τ2(P,T, E) and

Φ(T, E) ∪ p(P)

∪ { τ(s)↔ p(s) | s ∈ E}

∪ {¬τ(s) ∧ p(s)→ ⊥ | s ∈ F} for F = T \ E .

have the same stable models. Second, since Φ(T, E) contains formula τ(s) ∨ ¬τ(s) for

all s ∈ T , we can replace ¬τ(s) ∧ p(s) → ⊥ by p(s) → τ(s) without changing the

stable models. Finally, the statement of the lemma follows by application of the rule of

substitution of equivalents.

Lemma 4

Let T be a compositional and consistent theory and 〈h, t〉 be an interpretation. Then,

〈h, t〉 |= τ(Ûs) implies 〈h, t〉 |= ¬τ(s) for any theory atom s.

Proof

Assume that 〈h, t〉 |= τ(Ûs) and suppose, for the sake of contradiction, that 〈h, t〉 6|= ¬τ(s).

From Proposition 1 by Cabalar et al. (2020a), the latter implies t |= τ(s). That is, t ∈

J τ(s) K. Similarly, 〈h, t〉 |= τ(Ûs) implies t ∈ J τ(Ûs) K. Since T is compositional, this implies

that {s,Ûs} is T-satisfiable, which is a contradiction with the fact that T is compositional.

Consequently, 〈h, t〉 |= ¬τ(s).

Lemma 5

Let P be a T -program over 〈A, T , E〉 such that no atom in E occurs in a head of P . Let T

be a compositional and consistent theory. Let τ4(P,T, E) be the theory

p′(P) ∪ τ(P)

∪ {τ(s) ∨ ¬τ(s) | s ∈ F}

∪ {τ(s) ∨ τ(Ûs) | s ∈ E}

∪ {τ(s)↔ p(s) | s ∈ E}

∪ {p(s)→ τ(s) | s ∈ F} for F = T \ E .

where p′(P) is obtained from p(P) by replacing each occurrence of p(s) with s ∈ E

by τ(s). Then, theories τ2(P,T, E) and τ4(P,T, E) have the same stable models.

Towards a Semantics for Hybrid ASP systems 25

Proof

From Lemma 3, theories τ2(P,T, E) and τ3(P,T, E) have the same stable models. Let

τ
′
4(P,T, E) be the theory

p′(P) ∪ τ(P)

∪ {τ(s) ∨ τ(Ûs) | s ∈ E}

∪ {τ(s)↔ p(s) | s ∈ E}

∪ {p(s)→ τ(s) | s ∈ F} for F = T \ E .

Then, τ3(P,T, E) ⊆ τ
′
4(P,T, E) and, thus, every here-and-there model of τ

′
4(P,T, E) is

also a model of τ3(P,T, E). Note also that every formula in τ
′
4(P,T, E) \ τ3(P,T, E) is

either of the form of B → τ(s) or τ(s) ∨ τ(Ûs). For each formula B → τ(s), there

are formulas B → p(s) and p(s) → τ(s) in τ3(P,T, E), which intuitionistically entail

it. Similarly, for each formula τ(s) ∨ τ(Ûs), there are formulas (A5) and (A6), which

intuitionistically entail it. Hence, τ3(P,T, E) and τ
′
4(P,T, E) have the same here-and-

there models. Let τ
′′
4(P,T, E) be the theory

p′(P) ∪ τ(P)

∪ {τ(s) ∨ ¬τ(s) | s ∈ T }

∪ {τ(s) ∨ τ(Ûs) | s ∈ E}

∪ {τ(s)↔ p(s) | s ∈ E}

∪ {p(s)→ τ(s) | s ∈ F} for F = T \ E .

Then, τ′4(P,T, E) is the result of adding

¬τ(s)→ τ(Ûs) for every theory atom s ∈ E (A22)

to τ
′′
4(P,T, E) and that ¬τ(s)→ τ(Ûs) is entailed by τ(s)∨τ(Ûs). Hence, theories τ′4(P,T, E)

and τ
′′
4(P,T, E) have the same here-and-there models. Finally, note that τ′′4(P,T, E) is the

result of adding

τ(s) ∨ ¬τ(s) for every theory atom s ∈ E (A23)

to τ4(P,T, E) and that, from Lemma 4, we get that τ(s) ∨ τ(Ûs) entails τ(s) ∨ ¬τ(s).

Hence, τ′′4(P,T, E) and τ4(P,T, E) have the same here-and-there models and the lemma

statement follows.

Lemma 6

Let P be a T -program over 〈A, T , E〉. Let τ4(P,T, E) a theory as defined in Lemma 5.

Let v and w be valuations such that

w = { (τ(a), t) | a ∈ A and v(τ(a)) = t }

∪ { (x, v(x)) | x ∈ varsT(s), s ∈ E and v(x) 6= u }

∪ { (x, v(x)) | x ∈ varsT(s), s ∈ F , v ∈ J p(s) K and v(x) 6= u }

If v |= τ4(P,T, E), then w |= τ(P,T, E).

26 Pedro Cabalar et al

Proof

Note that τ4(P,T, E) can be rewritten as

τ(P,T, E) ∪ p′(P)

∪ {τ(s) ∨ ¬τ(s) | s ∈ F}

∪ {τ(s)↔ p(s) | s ∈ E}

∪ {p(s)→ τ(s) | s ∈ F} for F = T \ E .

and recall that τ(P,T, E) is

τ(P) ∪ {τ(s) ∨ τ(Ûs) | s ∈ E}

Assume that v |= τ4(P,T, E). Clearly w |= τ(s) ∨ τ(Ûs) for all s ∈ E because v and w agree

on all variables occurring in atoms from E and this formula belong to τ(P,T, E). Hence,

it remains to be shown that w |= τ(P). Since P is regular, all formulas in τ(P) are of the

form B → τ(s) with s ∈ A ∪F . Pick any such a formula. If w |= B, then v |=B because

all atoms in B belong to A ∪ E and v and w agree on all variables occurring in these

atoms. We distinguish two cases:

• If s ∈ A, then B → τ(s) in τ(P) implies that B → τ(s) belongs to p′(P) and,

since v |= τ4(P,T, E), this implies w(τ(s)) = v(τ(s)) = t.

• If s ∈ F , then B → τ(s) in τ(P) implies that B → p(s) belongs to p′(P). This

implies that v ∈ J p(s) K and, thus, v and w agree on all variables occurring in s.

Hence, w ∈ J p(s) K.

Therefore, we get that w |= τ(P,T, E).

Lemma 7

Let P be a T -program over 〈A, T , E〉. Let v and w be valuations such that

v = w ∪ { (p(s), t) | s ∈ E and w ∈ J τ(s) K }

∪ { (p(s), t) | s ∈ F , (B → p(s))) ∈ τ(P) and w |= B }

If v is a stable model of theory τ2(P,T, E), then w is a stable model of τ(P,T, E).

Proof

Assume that v is a stable model of theory τ2(P,T, E). From Lemma 5, this implies that v

is a stable model of theory τ4(P,T, E) and, thus, that v |= τ4(P,T, E). From Lemma 6,

this implies that w |= τ(P,T, E). Let as show that w is a stable model of this theory. Pick

any valuation h ⊂ w and let

h′ = h ∪ { (p(s), t) | s ∈ E , h ∈ J τ(s) K and v(p(s)) = t }

∪ { (p(s), t) | s ∈ F , (B → τ(s)) ∈ τ(P) and 〈h,w〉 |= B }

∪ { (x, v(x)) | s ∈ F , x ∈ varsT(s) and v ∈ J τ(s) K }

Let us show first that h′ ⊆ v. The only non-trivial case is when h′(p(s)) = t and s ∈ F .

This implies there is B → τ(s) in τ(P) such that 〈h,w〉 |= B and, thus, that w |= B.

Since w agrees with v on all variables occurring in B, it follows that v |= B. In addition,

since v |= τ4(P,T, E), we get that v |= B → p(s) and, thus, v(p(s)) = t. Note that B →

τ(s) in τ(P) implies that B → p(s) belongs to p′(P). Hence, h′ ⊆ v.

Towards a Semantics for Hybrid ASP systems 27

Then, either h′ = v or h′ ⊂ v. We proceed by cases and we will prove 〈h,w〉 6|= τ(P,T, E).

• Assume that h′ = v. Since h ⊂ w, there is s ∈ F and x ∈ varsT(s) such that h(x) = u,

w(x) = v(x) 6= u, v ∈ J τ(s) K and v ∈ J p(s) K. Furthermore, since v is a stable model

of τ4(P,T, E), we get that v ∈ J p(s) K implies that there is a formula of the formB → p(s)

in p′(P) such that v |= B (Proposition 11 by Cabalar et al. 2020b). Since v and w

agree on all variable occurring in atoms from A ∪ E , this implies that w |= B. In

addition, τ(P) contains formula B → τ(s) and 〈h,w〉 6|= τ(s) because x ∈ varsT(s)

and h(x) = u. Suppose, for the sake of contradiction, that 〈h,w〉 |= τ(P,T, E). Then,

〈h,w〉 6|= B and, since w |= B, there is an atom b ∈ A ∪ E that occurs in B such

that 〈h,w〉 6|= τ(b). This implies that there is variable y ∈ vars(b)T such that h(y) = u

and w(y) = v(y) 6= u. Note that, if b ∈ A, then y = pb and, thus, h(pb) = h′(pb) =

w(pb), which is a contradiction. Hence, we get that b ∈ E and, since vars(b)T = vars(Ûb)T,

this implies that 〈h,w〉 6|= τ(Ûb). This is a contradiction with the assumption, be-

cause τ(P,T, E) contains a formula of the form τ(b) ∨ τ(Ûb) for every b ∈ E . Conse-

quently, 〈h,w〉 6|= τ(P,T, E).

• Assume now that h′ ⊂ v. Since v |= τ4(P,T, E), it follows that

v |= τ(s)↔ p(s) for all s ∈ E

Then, it is easy to see that the following holds by construction:

〈h′, v〉 |= τ(s) ∨ ¬τ(s) for all s ∈ F (A24)

〈h′, v〉 |= τ(s)↔ p(s) for all s ∈ E (A25)

Suppose, for the sake of contradiction, that

〈h,w〉 |= τ(P,T, E) (A26)

We will show that this implies 〈h′, v〉 |= τ4(P,T, E), which is a contradiction with

the fact that v is a stable model of this theory. Pick a formula of the form p(s)→

τ(s) with s ∈ F . If 〈h′, v〉 |= p(s), by construction there is a formula of the form

of B → τ(s) in τ(P) such that 〈h,w〉 |= B. This implies 〈h′, v〉 |= B. Recall that w

and v agree on all variables occurring in atoms from A ∪ E and h ⊆ h′. Since we

supposed that 〈h′, v〉 |= τ(P,T, E) and this theory contains B → τ(s), this implies

that 〈h′, v〉 |= τ(s). Since 〈h′, v〉 |= p(s), we get that v ∈ J p(s) K and, by construc-

tion, these two facts imply that 〈h,w〉 |= τ(s). Hence,

〈h′, v〉 |= p(s)→ τ(s) for all s ∈ F (A27)

Pick now a formulas of the form B → p(s) and assume that 〈h′, v〉 |= B. Then, there

is B → τ(s) in τ(P) and 〈h,w〉 |= B. By construction, this implies that h′(p(s)) = t.

Hence,

〈h′, v〉 |= B → p(s) for all B → p(s) in p′(P) (A28)

Taking together facts (A24-A28), we get that 〈h′, v〉 |= τ4(P,T, E), which is a contra-

diction with the fact that v is a stable model of τ4(P,T, E). Hence, 〈h,w〉 6|= τ(P,T, E).

In both cases, we get that 〈h,w〉 6|= τ(P,T, E) and, thus, w is a stable model of τ(P,T, E).

28 Pedro Cabalar et al

Lemma 8

Let P be a T -program over 〈A, T , E〉 such that all atoms occurring in a body of P belong

to E and no atom in E occur in a head of P . Let v and w be valuations such that

v = w ∪ { (p(s), t) | s ∈ E and w ∈ J τ(s) K }

∪ { (p(s), t) | s ∈ F , (B → p(s))) ∈ τ(P) and w |= B }

If w is a stable model of theory τ(P,T, E), then v is a stable model of τ2(P,T, E).

Proof

Assume that w is a stable model of theory τ(P,T, E). We will show that v is a stable

model of τ4(P,T, E), which from Lemma 5, implies that v is a stable model of τ4(P,T, E).

Let us start by showing that v |= τ4(P,T, E). Recall that τ4(P,T, E) can be rewritten as

τ(P,T, E) (A29)

∪ p′(P) (A30)

∪ {τ(s) ∨ ¬τ(s) | s ∈ F} (A31)

∪ {τ(s)↔ p(s) | s ∈ E} (A32)

∪ {p(s)→ τ(s) | s ∈ F} for F = T \ E . (A33)

Note that, since v and w agree on all variable occurring in τ(P,T, E), we immediately get

that v satisfies all formulas in it. Furthermore, it is clear v satisfies all formulas in (A31)

and, by construction, all formulas in (A32). Pick a formula of the form of p(s) → τ(s)

and assume that v |= p(s). By construction, this means that there is a formula of the

form B → τ(s) in τ(P) ⊆ τ(P,T, E) such that w |= B and, thus, w ∈ J τ(s) K. Since v

and w agree on all variable occurring in theory atoms, we immediately get that v |= τ(s)

and, thus, all formulas in (A33). Finally, pick any formula in p′(P) \ τ(P,T, E). This

formula is of the form B → p(s) with s ∈ F . Furthermore, if v |= B, we get that w |= B

and, by construction, this implies that w |= p(s). Consequently, v satisfies all formulas

in (A30) and, thus, we get that v |= τ4(P,T, E).

Let us show now that, in fact, v is a stable model of τ4(P,T, E). Pick any valuation h ⊂ v

and suppose, for the sake of contradiction, that 〈h, v〉 |= τ4(P,T, E). Then, h|X ⊆ w

and, since w is a stable model of theory τ(P,T, E), we get that either h|X = w or

〈h|X , w〉 6|= τ(P,T, E).

• Assume h|X = w. Since h ⊂ v, this implies that h(p(s)) = u and v(p(s)) = t for

some s ∈ T .

— Assume first that s ∈ E . Then, by construction, v(p(s)) = t implies w ∈ J τ(s) K

and, since vars(τ(s)) ⊆ X , this plus h|X = w imply h ∈ J τ(s) K. Furthermore,

since we supposed that 〈h, v〉 |= τ4(P,T, E), it follows that 〈h, v〉 |= τ(s)↔ p(s)

for all s ∈ E , which is a contradiction with facts h(p(s)) = u and h ∈ J τ(s) K.

— Assume now that s ∈ F . By construction, v(p(s)) = t implies that there is

a formula of the form of B → τ(s) in τ(P) such that w |= B. Since we as-

sumed h|X = w, this implies that 〈h, v〉 |= B. Recall that v and w agree on

all variables occurring in theory atoms. Furthermore, since s ∈ F , we also get

thatB → p(s) belongs to p′(P) ⊆ τ4(P,T, E). Then, since 〈h, v〉 satisfies τ4(P,T, E),

these two facts imply that 〈h, v〉 |= p(s), which is a contradiction with h(p(s)) = u.

Towards a Semantics for Hybrid ASP systems 29

• Assume now 〈h|X , w〉 6|= τ(P,T, E). This implies that 〈h, v〉 6|= τ(P,T, E) because

interpretation 〈h, v〉 agrees with 〈h|X , w〉 on all variables occurring in τ(P,T, E).

Since τ(P,T, E) ⊆ τ4(P,T, E), this implies that 〈h, v〉 6|= τ4(P,T, E), which is a

contradiction with the supposition.

Hence, 〈h, v〉 6|= τ4(P,T, E) and, thus, that v is a stable model of τ4(P,T, E). From

Lemma 5, this implies that v is a stable model of τ2(P,T, E).

Proof of Proposition 11

The if direction follows directly from Lemma 7 and the only if direction from Lemma 8.

References

Cabalar, P., Fandinno, J., Schaub, T., and Wanko, P. 2020b. A uniform treatment of
aggregates and constraints in hybrid ASP. In Proceedings of the Seventeenth International
Conference on Principles of Knowledge Representation and Reasoning (KR’18), AAAI Press,
193–202.

	1 Introduction
	2 Background
	3 Logical Characterization of Answer Set Programming Modulo Theory
	3.1 Abstract theories
	3.2 Transformation-based semantics revisited
	3.3 AMT semantics based on HTc

	4 Answer Set Solving modulo Linear Equations
	5 Discussion
	References
	Appendix A Proofs of results
	A.1 Proofs of Propositions 1-5
	A.2 Proofs of the Main Theorem

	References

