Optimality Theory through Default Logic

Ph. Besnard
Institut fiir Informatik
Universitat Potsdam
Postfach 900327
D-14439 Potsdam
Germany
torsten@cs.uni-potsdam.de

Abstract

Optimality Theory is an approach to linguis-
tic problems which is based on rules with ex-
ceptions, resorting to a ranking among rules
to resolve conflicts arising from competing
rules.

In such a way, dealing with linguistic prob-
lems amounts to applying rules with excep-
tions: That is reasoning. A related issue is
then about a formalization of the logic at
work. An immediate candidate is Default
Logic which is dedicated to reasoning from
rules with exceptions. Moreover, there are
versions of default logic with priorities.

We show that Default Logic is well-suited
as a specification language capturing Opti-
mality Theory and suggests that implemen-
tations of default logic can be applied to run
experiments with grammatical interaction in
the sense of Optimality Theory and beyond.

1 Introduction

Optimality Theory is a grammatical architecture that
was invented in phonology [Prince & Smolensky 1993]
but managed to spread into the other subdisciplines of
linguistics quite successfully. In its standard version,
Optimality Theory (cf [Kager 1999] for instance) is a
representational rather than a derivational account of
grammatical facts: It comprises of a set of grammat-
ical constraints that evaluate the quality of candidate
structures (or, say, representations), but it does not
care how these candidate structures are generated.

In this respect, Optimality Theory only needs a com-
ponent that decides which structures are compared
with each other. The grammatical description of Op-

R. E. Mercer
Computer Science Department
Middlesex College
University of Western Ontario
London Ont. N6A 5B7
Canada
mercer@csd.uwo.ca

T. Schaub
Institut fiir Informatik
Universitat Potsdam
Postfach 900327
D-14439 Potsdam
Germany
torsten@cs.uni-potsdam.de

timality Theory is thus anchored with an input com-
ponent. Inputs could be strings of sounds (in phonol-
ogy), sets of morphemes (in morphology) or predicate-
argument structures (in syntax). They are subjected
to a GEN component that generates the candidate set
on the basis of the input by very general grammati-
cal processes. The candidate set is passed on to the
EVAL component (EVAL stands for evaluation) that is
in charge of selecting the optimal candidate accord-
ing to the language at hand, using the grammatical
constraints.

Optimality Theory assumes that the grammatical con-
straints are simple and universal (all languages work
with the same set of constraints): “syllables have an
onset”, “sentences have a subject” are examples of
what could be a constraint.

The grammatical constraints may imply incompati-
ble requirements for certain structures. E.g., objects
should follow the verb (compare John loves Mary with
*John Mary loves) but questions should begin with the
question word (how did she say this vs. *she said this
how). For an object question, the two principles make
different predictions (what did she say vs. *she said
what), and we see that the conflict between the two
principles is resolved in favor of the question principle.

In Optimality Theory, the grammatical constraints are
organized in a hierarchy. When two options compete,
the one with the better violation profile wins: A can-
didate structure S is grammatical if and only if there
is no competitor S’ such that the highest constraint
on which S and S’ differ incurs less violations from S’
than from S.

Conflict resolution is thus lexicographic: The num-
bers of violations of a candidate with respect to each
constraint form a vector (constraints are considered in
decreasing order).

Here is an example. The highest constraint is “the

question word occurs first”, the next highest constraint
is “the verb group comes second”, and the lowest
constraint is “any non-subject item occurs after the
subject”. Consider the candidates: (1) *where she is
now?, (2) *she is where now?, (3) where is she now?,
(4) *where is now she? The first constraint rules out
(2) that is the only candidate to violate it, and then
similarly for (1) with respect to the second constraint.
The last constraint is violated thrice by (4) but only
twice by (3) that is thus the best candidate (the fact
that (2) does not violate the last constraint is irrele-
vant: (2) was already out of the competition).

In Optimality Theory, this is often visualized in a two-
dimensional table as follows. Rewriting the candidates
(1) to (4) as z1 to x4 and abbreviating the three con-
straints (from higher to lower) by ¢; to c¢3, we obtain
the configuration depicted in Table 1:

Table 1: A constraint tableau in Optimality Theory
(optimal candidate: x3).

C1 C2 C3
z1: *where she is now? *
T2: *she is where now? *
x3: where is she now? Kk
z4: *where is now she? Fkok

The ranking among the contraints is reflected by their
decreasing importance from left to right. With the ex-
ception of grey cells, Table 1 displays to what extent
each candidate (dis)agrees with each constraint. E.g.,
the violation of ¢; by xo is indicated by * while the
triple violation of c3 by x4 is represented by *xx. Grey
cells denote data that are not taken into account (for
instance, the cell xo X c3 is grey to reflect the afore-
mentioned fact that no matter how well (2) fares with
respect to the last constraint it is irrelevant because
(2) is out by virtue of the first constraint).

Constraints in Optimality Theory turn out to be rules
with exceptions: They are universal but they are not
universally valid (e.g., there are syllables in English
that have no onset). Indeed, Optimality Theory pro-
vides a methodology to apply rules with exceptions.
As Default Logic was motivated by the need to deal
with such rules, it seems natural to investigate whether
Optimality Theory conforms with Default Logic.

Actually, Optimality Theory appears as reasoning
non-monotonically not only about optimal candidates
but also about candidates that fail to be optimal. In-
deed, applying constraints in Optimality Theory leads
to identify candidates as being suboptimal.

Unexpectedly enough, focusing on suboptimal candi-
dates turns out to yield a direct characterization using
defaults with priorities. This is interesting because
the intuitive approach in Optimality Theory is more
about the so-called winners than the so-called losers.
Yet, losers and winners can easily be related in the
obvious way using Default Logic.

2 Interaction in a linear hierarchy of
constraints

Consider the case where the candidates involve no cal-
culation: The list of candidates in final form a, b, ... is
available and the status (whether! absolute or relative
to any other candidate) of each candidate with respect
to every constraint is decided.

2.1 Harmonic parallel approach

Logic relations and defaults

The status of candidates with respect to constraints
is to be encoded by means of ¢;defeats(a,b) rela-
tions over candidates and suboptimality (i.e., failure
for a candidate to be a correct output) is encoded as
suboptimal(a).

The relation c¢;defeats(a,b) captures the case
of mnon-binary constraints as well as the case
of binary constraints (cf page 69 onwards in
[Prince & Smolensky 1993]).

That suboptimality is determined from the status of
the candidates is rendered through defaults:

cidefeats(a,b) :
suboptimal (b)

—suboptimal (a)

(ci)

that should be read (after [Prince & Smolensky 1993]
on page 74) as follows:

if b is less harmonic than a with respect to the
constraint c; then b is suboptimal
unless a is itself suboptimal

While the set of all candidates is simply assumed to
be finite, the set of constraints is assumed to be both
finite and totally ordered: C = {¢1,¢cq,...} where ¢;
ranks highest then cs and so on. So, the above defaults
for Optimality Theory are ordered accordingly:
ci<c; iff j>iandi#j

Hence, let us consider default logic with priorities
(adapted from [Brewka 1994]):

!Depending on each particular constraint.

Definition 1 Let (W, D, <) be a default theory where
< is a total order over D. Define

o =W
e forn >0,

E,+1 = Th(E, U{cons(d)})
where 6 ranks highest among all defaults O“Tﬁ mn
D that satisfy the conditions® o € E,, and -3 &
E, while v ¢ Th(E,); if no such default exist,
{cons(0)} = 0.

Then, E = Up>oE, is the extension of (W, D, <).

A correct output is then any candidate for which there
exists an extension in which it is not proven subopti-
mal. 3

Example 1 The language is a dialect of Berber and
the item to be parsed is /tzznt/. Two constraints (the
one denoted ¢y ranks higher than the one denoted c3)
are examined:

(c1) ONs (Syllables must have onsets)

(c2) HNUC (High sonority nucleus is more harmonic)

For this example, [Prince & Smolensky 1993] consider
the following three candidates:

dxz.nt.
dx.znt.

With a and b thus ranging over the set of candidates
{txtnit., ti.znt., Lfo.znt}, the defaults are:

crdefeats(a,b)
suboptimal (b)

: —suboptimal (a)

(c1)

(requiring a # b yields siz such defaults)*

2Tt is alos possible to require for § to be such that
—jus(6") & Th(E, U {cons(d)}) for all defaults & selected
prior to §. (i.e., for some m < n, §' ranking highest such
that o’ € E,, and =3’ &€ E,,, while v € Th(FE.,)).

The reader should not worry about matters of unique-
ness and non-uniqueness, which are unproblematic even
though the existence of exactly one extension for (W, D, <)
does not preclude the existence of more than one opti-
mal output. By contrast, it is an absolute requirement
that the order of defaults be total and this means that in-
stances of the same constraint ¢; have to be ordered (or
cidefeats(a,b) must be antisymmetric, as well as irreflex-
ive of course).

and

codefeats(a,b)
suboptimal (b)

: —suboptimal (a)

(c2)

(requiring a # b yields siz such defaults)*

Taking .txZ.nt. to be less behaved than the other two
candidates regarding ONS,

cidefeats(.ti.znt., txi.nt.) € W,

cidefeats(.fx.znt., trint.) € W,

and taking .tx.znt. to be less behaved than .t#.znit. re-
garding HNUC,

codefeats(.tt.znt., fx.2it.) € W,
the resulting default theory has exactly one extension:
Th(W U {suboptimal (.tx¢.5t.), suboptimal (.fx.znt.)})

The only candidate which is not proven suboptimal in
the extension is .t&.znt., this is the unique optimal can-
didate (the correct output).

The outcome would be the same, should
crdefeats(fx.zit., txiat.) not be in W. This
is an instance of the property which ensures that
those c;defeats(a,-) items are enough to get the
correct output(s), where a ranges over the optimal
candidate(s) while ¢; ranges over all constraints such
that © > j where j is the highest ranking constraint
violated by the optimal candidate(s).

It would also make no difference if HNUC had .fx.z1t.
less behaved than .txZ.nt.

Although the underlying idea is the same, using
c;de feats relations is more general than the mark ap-
proach in [Prince & Smolensky 1993] (cf page 68 on-
wards) which can be captured (as c;defeats can be
defined in virtually any way in W) as follows.

va/v ba Ma, Mp
Ons(a,mq) A Ons(b,mp) A mg >=ons M
— c1defeats(a,b)

VCLb, Ma, Mp
FM(ma) Ons FM(mb) — Mg > Ons Mp

Va, b7 Mg, My
(FM(my) =ons FM(mp)A
Rest(mg) =ons Rest(my)) — Mg =ons Mp

Ons(c, m.) means that ONs assigns a list m, of viola-
tion marks to every candidate c¢. Then, F'M(mg) > ons

4An arbitrary total order is assumed among these six
defaults (cf the previous footnote).

F M (my) always holds when m, is empty while m, is
not. Also, FM(m,) ~ons F'M(my) always holds when
m, and my, are both non-empty. Lastly, Rest(m.) de-
notes the list m. deprived from its first mark.

Ya, b, mq, my
Hnuc(a,mqy) A Hnue(b, mp) A My = Hnue M
— codefeats(a,b)

va7bv Mg, Mp
FM(ma) > Hnuc FM(mb) — Mg ™ Hnuc Mb

VCL ba Mg, My
(FM(mg) ~anue FM(mp)A
Rest(mq) = mnue Rest(my)) — Ma = Hnue M

Similarly to ONS, this assumes HNUC
([Prince & Smolensky 1993] page 72) to provide:

e a list of marks m, sorted from most to least
sonorous® for every candidate ¢
(as is required in the first formula)

e an assessment for every pair of marks where one
is more sonorous than the other
(as is required in the second formula)

e an assessment for every pair of equally sonorous
marks
(as is required in the third formula)

All this assumes further that W contains the usual ax-
ioms for equality (for instance, Rest(Rest(Rest(m.)))
must be provably equal with the list obtained by delet-
ing the first three marks in m.). There are other for-
mulations, getting rid of FM and Rest, such that the
axioms of equality can be dispensed with.

As to a different kind of an example, consider NONFI-
NALITY in a version where it is a binary constraint that
does not apply multiply ([Prince & Smolensky 1993]
page 43)

Va,b

Nonfinality(a) A ~Nonfinality(b) — c;defeats(a,b)®

where ¢ is the rank of NONFINALITY and for every
candidate ¢, Non finality(c) holds when the head foot
of the prosodic word is not final.

2.2 Harmonic sequential approach

Now, it is no longer the case that the candidates are
available right from the start. They are to form step

SHarmonic, if we identify the mark with the nucleus it
stands for (p.72 [Prince & Smolensky 1993]).

®This formula makes cidefeats()c]z, b) to be antisym-
metric. Also, if all candidates fail NONFINALITY then
cidefeats(a,b) holds for no a and b.

by step, some of them getting discarded even before
they develop to final form (this is the difference with
the parallel approach).

Logic relations and defaults

Generation of (partial) candidates is encoded by means
of the gen(a, b) relation indicative of a derivation step
from a to b. That a representation in the derivation
currently counts as a candidate is encoded by means of
current(a). Steps in generation are rendered through
the default”

current(a) A gen(a,b) : —suboptimal(b)

(Gen)

current(b)
that reads

if a counts as a candidate and there is a step in
derivation turning a into b
then b counts as a candidate unless b is suboptimal

Importantly, this default® ranks lower than all the ones
representing constraints:

cidefeats(a,b) :
suboptimal (b)

—suboptimal (a)

(ci)

These defaults are exactly as in the parallel approach®
(thus making the sequential approach a generalization
of it).

Vo input(z) — current(z) € W

If that is desired, a more detailed formulation is pos-
sible where changed elements are explicited as it only
takes including in W the following formulas for all rel-
evant a, b, c:

change(a, e,)

(gen(a,b) A gen(a,c) A change(b, ep) A
change(c, e.) A c;defeats(ep, e.)) — c;defeats(b,c)

The former formulas indicate that e, is the changed
element in a and the latter formulas state that defeat
among candidates is ruled by defeat among changed
elements.

"Singular is used here, although improperly, as the spe-

ciﬁg values of a and b are unimportant.
Again, singular is improperly used. As a further mo-

tive, it can be pointed out that the highest ranking among
all defaults of that form ranks lower than any default rep-

resenting a constraint.
Eg‘Even though they need not obey the same order: see

footnote 49 in [Prince & Smolensky 1993].

Digression. A subtlety is that antisymmetry is re-
quired for c;defeats if its arguments are changed ele-
ments (i.e., ¢;defeats(ep, e.) and c¢;defeats(ec, ep) are
incompatible). Such a requirement is not needed for
cidefeats if its arguments are partial candidates (that
is, of concern here is symmetry through ¢;de feats(b, ¢)
and c¢;defeats(c,b)). How can this be? Well, b and
c differ from each other by at least one changed ele-
ment. Now, one of these must occur before the other
and therefore rules out the other candidate.

Example 2 In the same dialect of Berber, the item to
be parsed is /ratlult/ so that

input(ratiult) € W
The following formulas are also in W:
gen(ratlult, {r A} tlult)

gen({rA}tiult, {r A}t{lu}lt)
gen({rA}tlult, {r AtHult)

Distinctively — from the
[Prince & Smolensky 1993]),
straints'C is:

parallel approach (cf
the ordering of con-

(c1) —CoD (Syllables do not have codas)

(c2) HNUC (Higher sonority nucleus is more har-
monic)

such that
code feats({rAtHult, {rA}t{lu}lt) e W

crdefeats({rA}yt{lu}it, {r At}lult) € W

The resulting default theory has exactly one extension:
Th(W U X)
where X consists of the following formulas

current({rAt}ult)
suboptimal ({r At Hlult)
current({rA}t{lu}lt)

The above data are partial, they only describe an initial
part of the process of selecting the correct output. Yet,
they suffice to indicate that {rA}t{lu}lt is the line to
be developed but not {rAt}lult. Should more data be
taken into account, the result goes further.

0Where —Cop is introduced on
[Prince & Smolensky 1993].

page 34 in

If the changed elements are to be explicited, the follow-
ing formulas have to be in W :

gen(ratlult, {r A}tlult)
— change({rA}tlult, {rA})

gen({rA}tlult, {r A}t{lu}it)
— change({rA}t{lu}lt, {lu})

gen({rA}tlult, {rAt}lult)
— change({rAt}Hult, {rAt})

cadefeats({rAt}, {lu})
crdefeats({lu}, {rAt})

codefeats({rAt}, {lu})
— codefeats({rAt}lult, {r A}t{lu}lt)

crdefeats({lu}, {rAt})
— cidefeats({rA}t{lu}lt, {rAt}lult)

Of course, the outcome is exactly the same.

3 Interaction in an arbitrary
hierarchy of constraints

3.1 Harmonic parallel approach

Footnote 31 in [Prince & Smolensky 1993] acknowl-
edges the possibility that a grammar should recog-
nize nonranking pairs of constraints (although the au-
thors make it clear that they found no evidence of cru-
cial nonranking). Non-linear hierarchies of constraints
may further seem invited from the view stated on page
88 in [Prince & Smolensky 1993], that a category of
constraints dominated by others fixed in superordinate
position may be relatively ranked in any dominance
order in a particular language. !

Logic relations and defaults

Logic relations and defaults are still as described
above. The set of constraints is still finite but need no
longer to be totally ordered: Therefore, it is still the
case that ¢; < ¢; for some ¢; and ¢; in C = {c1, ¢2, ...}
but this no longer relates to j > i. Accordingly, let
us now consider default logic with non-linear priorities
(adapted from [Baader & Hollunder 1995]):

Definition 2 Let (W, D, <) be a default theory where
< is a partial order over D. Then, E is an extension
for (W, D, <) iff E = Up>0E, such that

[] EO = W

1Not: ...are relatively ranked in some dominance order

e forn >0,
Ept1 = Th(E, UCons({é1,...,0}))

where 61 ... 8 have priority'? among all defaults
in D that are active'® in E,

An example [Prince & Smolensky 1993] not requiring
a linear hierarchy of constraints:

Example 3 The language is Latin. Three constraints
are considered:

(c1) FTBIN (Feet are binary at some level of analysis)

(c2) Lx~PRrR (A member of a certain morphological
category corresponds to a PRWD)

(c3) NONFINALITY (The head foot of the prosodic word
is not final)

Consider the following three candidates:

.a.qua.
(@) L
(G.qua)
With uw and v ranging over the set of candidates
{.a.qua., (4) L, (4d.qua)}, defaults are:

(c1)

cidefeats(u,v) : —suboptimal(u)

suboptimal (v)

cadefeats(u,v) : —suboptimal(u)

(c2)

suboptimal (v)

cgdefeats(u,v) : —suboptimal(u)

(c3)

c3 ranks lowest of all but neither ¢y ranks higher than
co nor co ranks higher than c1. The other data are

Vu cidefeats(u, (4) L) € W
Yu codefeats(u, .a.qua.) € W
Yu cgdefeats(u, (d.qua)) € W

The outcome is that the default theory at hand has a
single extension

E = Th(WU{suboptimal(a) L), suboptimal(.a.qua.)})

suboptimal (v)

The optimal candidate is (d.qua), there was no need
for a linear ordering of constraints.

The existence of a unique optimal candidate coincides
with the existence of a greatest element in the
induced'* ordering.

12The precise definition depends on what variant of de-
fault logic is selected.

Again, there is a choice of definitions here and
Cons({61,...,0k}) = 0 by convention when no default is
active.

4Tnduced by ¢;’s ordering.

4 Logic programming
As for harmonic parallelism, the case of a lin-
ear hierarchy of constraints is efficiently tack-
led wusing logic programming, in a guise e.g.
[Delgrande, Schaub, & Tompits 2000] where prefer-
ences can be expressed so that preemption among con-
straints is resolved:

suboptimal(b) :-
name(i(a,b)),
c-i-defeats(a,b),
not suboptimal(a).

For all j < k (i.e., constraint j ranks higher than con-
straint k), one need the clauses:

G0 < k(,0).

Example 4 (Back to the Berber example.) The
predicate missing-ons(c,r) assigns the missing on-
sets in the candidate c to the wvariable r whereas
s-nuclei(c,r) assigns the nuclei in the candidate c
(sorted from most to least sonorous) to the variable .

c-1-defeats(a,b) :-
missing-ons(a,p),
missing-ons(b,q),
better-ons(p,q) .
c-2-defeats(a,b) :-
s-nuclei(a,p),
s-nuclei(b,q),
better-hnuc(p,q) .
better-ons([], [z]t]).
better-ons([x|r], [yls]) :-
better-ons(r,s).
better-hnuc([x|r], [yls]) :-
more-sonorous (x,y) .
better-hnuc([x|r], [x]s]) :-
better-hnuc(r,s).

Entering the data,

missing-ons(".txZ.Nt.", [2nd-syll]).
missing-ons(".tX.zNt.",[]).
missing-ons(".Tx.zNt.",[]).
s-nuclei(".txZ.Nt.", ["N","Z"]).
s-nuclei(".tX.zNt.", ["N","X"]).
s-nuclei(".Tx.zNt.",["N","T"]).
more-sonorous ("X","T").

the outcome is that the goal suboptimal (".txZ.Nt.")
succeeds as does the goal suboptimal(".Tx.zNt.")
while the goal suboptimal (".tX.zNt.") fails, mean-
ing that ".tX.zNt." is optimal.

5 Summary of method

The method introduced here can be described as fol-
lows:

1. Include in W the status of candidates with respect
to constraints:

Cy — cidefeats(p,0)

where the conditions C are basically tautological
in the parallel approach'®

—in which case the above formulas then simplify
to c;defeats(p, o).

2. Include in D the effect of constraints towards sub-
optimality:

cidefeats(p,0) : —suboptimal(y)

suboptimal (o)
3. Specify the ordering < between constraints.

4. In view of the resulting default theory (W, D, <),
look for any candidate ¢ such that suboptimal(c)
is not in an extension. Such a candidate is a cor-
rect output.

As we have seen, the above scheme can be extended
when dealing with special cases such as the sequential
approach and so on:

gen(x, k)

change(k, €x)

References

[Baader & Hollunder 1995]
F. Baader and B. Hollunder.
Priorities on defaults with prerequisites. Jour-
nal of Automated Reasoning 15:41-68, 1995.

[Brewka 1994] G. Brewka.
Adding priorities and specificity to default
logic. In L. Pereira and D. Pearce, editors,
4th European Workshop on Logics in Artificial
Intelligence (JELIA-94), pp. 247-260, 1994.

[Delgrande, Schaub, & Tompits 2000]
J. Delgrande, T. Schaub, and H. Tompits.
A compiler for logic programs with prefer-
ences. 2000.
http://www.cs.uni-potsdam.de/~torsten/plp

[Delgrande, Schaub, & Tompits 2000]
J. Delgrande, T. Schaub, and H. Tompits.
A compiler for ordered logic programs.

8th Workshop on Non-Monotonic Reasoning
(NMR-2000), Breckenridge, CO, 2000.

[Delgrande, Schaub, & Tompits 2000]
J. Delgrande, T. Schaub, and H. Tompits.
Logic programs with compiled preferences.
14th European Conference on Artificial Intel-
ligence (ECAI-00), Berlin, Germany, 2000.

[Kager 1999] R. Kager.
Optimality Theory. Cambridge Textbooks in
Linguistics. Cambridge Univ. Press, 1999.

[Prince & Smolensky 1993]
A. Prince and P. Smolensky.
Optimality Theory. Tech Report, Rutgers U.,
New Brunswick (NJ), and Computer Science
Department, U. of Colorado, Boulder. 1993.

gen(p, o) A gen(p, p) A change(o, €,) A change(p, €,) A cidefeats(eq, €,) — cidefeats(o, p)

Expressing Optimality Theory in default logic without
priority is also possible, with defaults that are no more
complex than above. However, modularity as well as
independence of defaults from constraint ranking are
lost.

Acknowledgements

This research has been partially supported by the
German Science Foundation (DFG) under grant
FOR 375/1-1, TP C.

15Reduplication of the mark approach is a good example
showing that the conditions C\ can take various forms, all
of them amount to tautologies.

