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Abstract

Declarative languages for knowledge representation and rea-
soning provide constructs to define preference relations over
the set of possible interpretations, so that preferred models
represent optimal solutions of the encoded problem. We in-
troduce the notion of approximation for replacing preference
relations with stronger preference relations, that is, relations
comparing more pairs of interpretations. Our aim is to accel-
erate the computation of a non-empty subset of the optimal
solutions by means of highly specialized algorithms. We im-
plement our approach in Answer Set Programming (ASP),
where problems involving quantitative and qualitative prefer-
ence relations can be addressed by ASPRIN, implementing a
generic optimization algorithm. Unlike this, chains of approx-
imations allow us to reduce several preference relations to the
preference relations associated with ASP’s native weak con-
straints and heuristic directives. In this way, ASPRIN can now
take advantage of several highly optimized algorithms imple-
mented by ASP solvers for computing optimal solutions.

Introduction
Languages for knowledge representation and reasoning
provide syntactic constructs for encoding common sense
knowledge, and are equipped with formal semantics so that
each model of the instance in input describes a plausible sce-
nario for the encoded knowledge (van Harmelen, Lifschitz,
and Porter 2008). Scenarios differ from each other, and sev-
eral preference relations may be applied to them depending
on properties that are more desirable. Preference relations
can be quantitative, qualitative, or a combination of them.

Examples of quantitative preferences are weighted and
unweighted weak constraints (Buccafurri, Leone, and Rullo
2000; Simons, Niemelä, and Soininen 2002), a construct
widely used in Answer Set Programming (ASP) (Gelfond
and Lifschitz 1991); weak constraints may also specify lev-
els, so to obtain a lexicographic combination of cardinality
and weight preferences. Examples of qualitative preferences
are subset and superset minimality (Di Rosa, Giunchiglia,
and Maratea 2010), the former preference relation underly-
ing circumscription (McCarthy 1980; Lifschitz 1986).

These preference relations have been widely studied, and
very efficient algorithms have been developed for them.
This is not the case for other preference relations, among
them answer set optimization (aso) (Brewka, Niemelä, and

Truszczynski 2003), partially ordered set (poset) (Rosa and
Giunchiglia 2013), and several composite preferences. Ac-
tually, efficient algorithms are either specific of a formal-
ism and a preference relation, as for example for weak con-
straints in ASP, or obtained by mapping the preference rela-
tion of interest to another, as done for example by CIRCUM-
SCRIPTINO to enumerate circumscribed models by comput-
ing cardinality optimal models (Alviano 2017).

The aim of this paper is to generalize the mapping ap-
proach to other common preference relations. For this pur-
pose, knowledge bases and preference relations are first con-
sidered at a semantic level: knowledge bases are sets of mod-
els; preference relations are partial orders over the power set
of a domain of interest, and can be associated with specific
knowledge bases in order to define iterative algorithms for
computing preferred models of the knowledge base in input.

Working at a semantic level makes clear the similarities
between different preference relations. For example, less-
cardinality preferences are supersets of subset preferences.
Such a property provides an alternative proof for the correct-
ness of the algorithm implemented by CIRCUMSCRIPTINO
for computing subset optimal models. Actually, this prop-
erty can be further generalized by adding an upstream ex-
pansion function for introducing auxiliary symbols. Specifi-
cally, some mappings between different preference relations
require the introduction of auxiliary atoms, and expansion
functions impose that truth values of auxiliary atoms are
uniquely determined by truth values of original atoms. We
show how the resulting new notion, referred to as approxi-
mation, can be applied to several preferences, namely cardi-
nality, weight, aso, poset, and many composite preferences.
Interestingly, different approximations can be applied se-
quentially, so that all considered preferences can be mapped
to a single kind of preferences, namely lexicographic com-
position of less-weight preferences, viz., the preference as-
sociated with weak constraints.

Since weak constraints are the native ASP construct to en-
code preferences, all algorithms developed and implemented
in efficient ASP solvers are hence available for computing
preferred models of all preference relations considered in
this paper. In fact, the notion of approximation is imple-
mented in ASPRIN (Brewka et al. 2015b), a general purpose
logic-based system where knowledge bases and preference
relations are encoded by ASP programs. The implementa-
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Figure 1: Approximations to normalize common preference
relations in lexicographic composition of less-weight (dot-
ted and solid arrows) or subset preferences (dashed and solid
arrows). An arrow from α to β denotes that preference α is
approximated by preference β.

tion is assessed empirically, comparing different algorithms
of CLASP (Gebser et al. 2015). Lexicographic composition
of subset preferences is also natively supported by CLASP
via #heuristic directives (Gebser et al. 2013c). Hence,
yet another solving strategy is obtained by introducing ap-
proximations targeting lexicographic composition of subset
preferences. These mapping are interesting from two points
of view. Theoretically, they provide mapping from qualita-
tive to quantitative preferences, and vice versa. Pragmati-
cally, they provide two normal forms associated with several
computational strategies.

A summary of the approximations to obtain the two nor-
mal forms mentioned above is given in Figure 1. Intuitively,
the normalization procedures work bottom-up on the tree
structure of the preference relation in input, and apply ap-
proximations to all nodes that are not already in normal
form. For example, aso is approximated by superset, which
in turn is approximated by either more-weight or subset, de-
pending on the desired normal form.

Knowledge Bases and Preferences
A knowledge base Γ is a pair (A,M) such that A is a (fi-
nite) set of (propositional) atoms, and M is a (finite) set
of subsets of A. Set A is the domain of Γ, and each set in
M is a model of Γ. The knowledge base Γ is consistent if
M 6= ∅, otherwise Γ is inconsistent. The projection of a
knowledge base (A,M) on a set A′ ⊆ A is the knowledge
base (A′, {I ∩ A′ | I ∈M}).

For a set A of atoms, let A? denote the set {p? | p ∈ A},
and for all n ≥ 0 let An denote the set {pn | p ∈ A},
where p? and pn are fresh atoms. For a knowledge base Γ,
and n ≥ 0, let Γn denote the knowledge base obtained from
Γ by replacing each atom p? with pn. (Intuitively, p? is a
placeholder to be replaced with some pn.)

The join Γ on Γ′ of two knowledge bases Γ = (A,M),
Γ′ = (A′,M′) is defined as follows:

Γ on Γ′ := (A ∪A′, {I ∪ J | I ∈M, J ∈M′,
I ∩ A′ = J ∩ A}).

Intuitively, models of Γ and Γ′ are combined if they agree on
the shared domain A ∩A′. (In fact, note that I ∩ A ∩ A′ =
I∩A′ since I ⊆ A, and J ∩A∩A′ = J ∩A since J ⊆ A′.)

Algorithm 1: solveOpt(Γ : knowledge base (A,M), �
: preference relation over A)

1 I := ⊥;
2 J := solve(Γ);
3 while J 6= ⊥ do
4 I := J ∩ A;
5 J := solve(Γ on [�] on (A?, {I?}));
6 return I;

Example 1. The join of ({a, b}, {{a}, {b}}) and
({b, c}, {∅, {b, c}, {c}}) is ({a, b, c}, {{a}, {a, c}, {b, c}}).
Indeed, {a} is obtained by combining {a} and ∅, {a, c} is
obtained by combining {a} and {c}, and finally {b, c} is
obtained by combining {b} and {b, c}. �

A preference relation� over a domainA is a partial order
over 2A, that is, � is a subset of 2A × 2A, and � is reflex-
ive, antisymmetric and transitive. (Note that � also defines
a preference relation over any superset of A in the obvious
way, that is, I � J if and only if I ∩ A � J ∩ A.) Let � be
the strict partial order obtained from �, that is, I � J if and
only if I � J and J 6� I . (Recall that a strict partial order is
an irreflexive and transitive relation.)

Let Γ = (A,M) be a knowledge base, and � be a pref-
erence relation over A. I ∈M is a �-optimal model of Γ if
there is no J ∈M such that J � I .
Example 2. Let Γ be ({a, b, c, d},M), whereM comprises
{a, b}, {b, c}, {d}, and their supersets. Let⊆{a,b,c,d} be such
that I � J if and only if I ∩ {a, b, c, d} ⊆ J ∩ {a, b, c, d}.
The ⊆{a,b,c,d}-optimal models of Γ are {a, b}, {b, c}, and
{d}. �

Iterative Algorithms
Let � be a preference relation on domain A. Let [�] denote
(A ∪ A?, {I ∪ J? | I � J}), the preference knowledge
base for �. Similarly, let [ 6�] denote (A ∪ A?, {I? ∪ J |
I 6� J}), the complementary preference knowledge base for
�. Note that, for all I, J ⊆ A, I � J if and only if [�]
on (A, {I}) on (A?, {J?}) is consistent, and I 6� J if and
only if [ 6�] on (A?, {I?}) on (A, {J}) is consistent.
Example 3 (Continuing Example 2). Let [⊂{a,b,c,d}] be
the preference knowledge base for ⊆{a,b,c,d}, subset on do-
main {a, b, c, d}. Hence, {a, b} ∪ {a, b, c}? is a model of
[⊂{a,b,c,d}], while {a, b} ∪ {b, c}? is not. Let [6⊂{a,b,c,d}]
be the complementary preference knowledge base for
⊆{a,b,c,d}. Then, {a, b}? ∪ {b, c} is a model of [ 6⊂{a,b,c,d}],
while {a, b}? ∪ {a, b, c} is not. �

Preference knowledge bases offer an intuitive procedure
to verify the optimality of models via a consistency check
(with certificate).
Proposition 1. Let Γ = (A,M) be a knowledge base, and
� be a preference relation over A. I ∈ M is a �-optimal
model of Γ iff Γ on [�] on (A?, {I?}) is inconsistent.

Additionally, when the consistency check actually returns
a model J , it is guaranteed that J � I , which provides



Algorithm 2: enumOpt(Γ : knowledge base (A,M),�
: preference relation over A)

1 for n ∈ N+ do
2 I := solveOpt(Γ,�);
3 if I = ⊥ then break;
4 print I;
5 Γ := Γ on (A, 2A \ {I}) on [6�]n on (An, {In});

an iterative sat-unsat algorithm shown as Algorithm 1. The
algorithm searches for a first model by means of proce-
dure solve , which returns a model of the knowledge base
provided in input if it exists, and ⊥ otherwise. The initial
model I , if any, is possibly improved by calling solve on
Γ on [�] on (A?, {I?}), and this improvement is repeated
until⊥ is returned. The last computed model is then the out-
put of the algorithm, a �-optimal model of Γ.

Example 4 (Continuing Example 3). Consider
solveOpt(Γ,⊆{a,b,c,d}). Suppose that solve(Γ) returns
{a, b, c}. Algorithm 1 then calls solve for the knowledge
base Γ on [⊂{a,b,c,d}] on ({a, b, c, d}?, {{a, b, c}?}), where
[⊂{a,b,c,d}] on ({a, b, c, d}?, {{a, b, c}?}) has models of
the form I ∪ {a, b, c}?, for all I ⊂ {a, b, c}. A model, say
{a, b} ∪ {a, b, c}?, is returned, and the knowledge base
Γ on [⊂{a,b,c,d}] on ({a, b, c, d}?, {{a, b}?}) is processed.
Function solve returns ⊥, and the algorithm terminates
giving in output {a, b}, a ⊆{a,b,c,d}-optimal model of Γ. �

In order to compute a second�-optimal model, and there-
fore obtain an enumeration algorithm, a few interpretations
have to be blocked. First of all, previously computed �-
optimal models have to be blocked; to this aim, for an inter-
pretation I ⊆ A, the following knowledge base can be used:
(A, 2A\{I}). Moreover, interpretations being less preferred
than a previously computed �-optimal model I have to be
discarded as well; this is achieved by the knowledge base
([6�] on (A?, {I?}))n = [6�]n on (An, {In}). The resulting
enumeration procedure is reported as Algorithm 2.

Example 5 (Continuing Example 4). After model
{a, b} is computed, Γ is joined with ({a, b, c, d},
2{a,b,c,d} \ {{a, b}}) to discard {a, b}, and with
[6⊂{a,b,c,d}]1 on ({a, b, c, d}1, {{a, b}1}) to discard supersets
of {a, b}. The next call to solveOpt returns a second
⊆{a,b,c,d}-optimal model, say {a, c}, and Γ is joined with
({a, b, c, d}, 2{a,b,c,d} \ {{a, c}}) to discard {a, c}, and
with [6⊂{a,b,c,d}]2 on ({a, b, c, d}2, {{a, c}2}) to discard
supersets of {a, c}. At this point, the only models of Γ
are {a, d}, {b, d}, {c, d}, and {d}. The latter is actually
returned by the next call to solveOpt , so Γ is joined with
({a, b, c, d}, 2{a,b,c,d} \ {{d}}) to discard {d}, and with
[6⊂{a,b,c,d}]3 on ({a, b, c, d}3, {{d}3}) to discard supersets
of {d}. Hence, Γ is now inconsistent, and the algorithm
terminates. �

Preference Approximation
In Algorithm 1, the preference knowledge base [�] forces
procedure solve to search for a model being more preferred
than the last computed model. A stronger preference relation
can be also used for this purpose, and is the underlying idea
of preference approximations.

Let A,A′ be sets of atoms such that A ⊆ A′. An expan-
sion function from A to A′ is a function e : 2A → 2A

′

such that e(I) ∩ A = I , for all I ⊆ A. Abusing of notation,
for a knowledge base Γ = (A,M), let e(Γ) be the knowl-
edge base (A′, {e(I) | I ∈ M}). Let id : 2A → 2A be
the identity expansion function, that is, id(I) = I for any
interpretation I .

Let � be a preference relation for A, and e be an expan-
sion function from A to A′. A preference relation �′ is an
approximation of � with respect to e, or e-approximation,
if I � J implies e(I) �′ e(J), for all I, J ⊆ A. If also
e(I) �′ e(J) implies I � J , then �′ is a reduction of �
with respect to e, or e-reduction. First of all, note that ex-
pansion functions, approximations and reductions are closed
under composition.

Theorem 1. Let e : 2A → 2A
′
, e′ : 2A

′ → 2A
′′

be expan-
sion functions. Their composition e′ ◦ e : 2A → 2A

′′
is an

expansion function. Moreover, if �′ is an e-approximation
of �, and �′′ is an e′-approximation of �′, then �′′ is an
(e′ ◦ e)-approximation of �.
Corollary 1. If �′ is an e-reduction of �, and �′′ is an
e′-reduction of �′, then �′′ is an (e′ ◦ e)-reduction of �.

Intuitively, an expansion function e and an e-
approximation �′ can be used to compute some �-optimal
models of a knowledge base Γ by focusing on �′-optimal
models of e(Γ), as formalized by the following theorem.
Theorem 2. Let Γ = (A,M) be a knowledge base, � be
a preference relation over A, e : 2A → 2A

′
be an expan-

sion function, and �′ be an e-approximation of �. For any
I ⊆ A, if e(I) ⊆ A′ is a �′-optimal model of e(Γ), then I
is a �-optimal model of Γ.

According to the theorem above, only some optimal mod-
els are preserved in general by an approximation. On the
other hand, reductions preserves all optimal models, as for-
malized by the following corollary of Theorem 2.
Corollary 2. If �′ is an e-reduction of �, then I is a
�-optimal model of a knowledge base Γ if and only if
e(I) ⊆ A′ is a �′-optimal model of e(Γ).

It turns out that �-optimal models of Γ = (A,M)
can be enumerated by a procedure similar to Algorithm 2,
where Γ is replaced by e(Γ), and �′ is used to improve
models instead of �, where e is any expansion function
from A, and �′ is any e-approximation of �. Such a
procedure is reported as Algorithm 3. Note that Γ is in
fact replaced by e(Γ) (line 1), and �′ is used to improve
models (line 3). Finally, optimal models are blocked by
(A, 2A\{I∩A}), and less preferred models are discarded by
([6�] on (A?, {I? ∩ A?}))n = [6�]n on (An, {In ∩ An}).
Example 6 (Continuing Example 2). Let ≤card

{a,b,c,d} be the
preference relation such that, for all I, J ⊆ {a, b, c, d},



Algorithm 3: enumOptApprox (Γ : knowledge
base (A,M), � : preference relation over A,
e : 2A → 2A

′
, �′ : e-approximation of �)

1 Γ := e(Γ);
2 for n ∈ N+ do
3 I := solveOpt(Γ,�′);
4 if I = ⊥ then break;
5 print I ∩ A;
6 Γ := Γ on (A, 2A \ {I ∩ A}) on [ 6�]n on

(An, {In ∩ An});

Algorithm 4: enumOptApprox2 (Γ : knowledge
base (A,M), � : preference relation over A,
e : 2A → 2A

′
, �′ : e-approximation of �)

1 Γ := e(Γ);
2 n := 0;
3 repeat
4 X := {I | I is printed by enumOpt(Γ,�′)};
5 for I ∈ X do
6 print I ∩ A;
7 n := n+ 1;
8 Γ := Γ on (A, 2A \ {I ∩ A}) on [6�]n on

(An, {In ∩ An});

9 until X = ∅;

I ≤card
{a,b,c,d} J if and only if the cardinality of I ∩{a, b, c, d}

is smaller than or equal to the cardinality of J ∩ {a, b, c, d}.
Hence, ≤card

{a,b,c,d} is an id -approximation of ⊆{a,b,c,d}, and
Algorithm 3 can be executed. The first call to solveOpt must
return {d}, a ≤card

{a,b,c,d}-optimal model of Γ, and therefore a
⊆{a,b,c,d}-optimal model of Γ. In order to compute a sec-
ond ⊆{a,b,c,d}-optimal model, the knowledge base is joined
with ({a, b, c, d}, 2{a,b,c,d}\{{d}}) to discard {d}, and with
[6<card
{a,b,c,d}]

1 on ({a, b, c, d}1, {{d}1}) to discard supersets
of {d}. The next call to solveOpt must then return either
{a, b} or {b, c}. �

An alternative enumeration algorithm can be obtained by
first computing all �′-optimal models of e(Γ), for example
by invoking enumOpt(e(Γ),�′); models are then collected
and processed in block with� to discard less preferred mod-
els. Algorithm 4 implements such a strategy. Note that the
algorithm repeatedly calls enumOpt on e(Γ) and �′, but
any enumeration procedure for �′-optimal models of e(Γ)
can be equivalently employed. Note also that a single call to
enumOpt is sufficient in the special case of e-reductions.

The remainder of this section introduces approximations
for common preference relations, and a bottom-up algo-
rithm to normalize them in lexicographic composition of
less-weight or subset preferences.

Simple Preferences
For w : A → Z being a function mapping atoms into inte-
gers, let ≤wA denote the less-weight preference over A, that
is, I ≤wA J if and only if

∑
p∈I∩A w(p) ≤

∑
p∈J∩A w(p).

Similarly, let≥wA denote the more-weight preference overA,
i.e., I ≥wA J if and only if

∑
p∈I∩A w(p) ≥

∑
p∈J∩A w(p).

Finally, let −w be the function mapping each p ∈ A to
−1 · w(p).
Proposition 2. Let A be a set of atoms, and w : A → Z be
a function. Preference ≤−wA is an id -reduction of ≥wA, and
preference ≥−wA is an id -reduction of ≤wA.

For a set A of atoms, let ⊆A denote the subset preference
over A, that is, I ⊆A J if and only if I ∩ A ⊆ J ∩ A.
Similarly, let⊇A denote the superset preference overA, that
is, I ⊇A J if and only if I∩A ⊇ J∩A. Let card : A → {1}
map atoms to the constant 1, and let≤card

A and≥card
A be also

called less-cardinality and more-cardinality preference over
A, respectively.
Proposition 3. Let A be a set of atoms. Preference
≤card
A is an id -approximation of ⊆A, and ≥card

A is an id -
approximation of ⊇A.

Subset and superset preference relations are also linked
by the following e-reductions.
Proposition 4. Let A be a set of atoms, Aneg be {negp |
p ∈ A}, where each negp is a fresh atom. Preference ⊇Aneg

is an eA
neg

-reduction of⊆A, and⊆Aneg is an eA
neg

-reduction
of ⊇A, where eA

neg

: I 7→ I ∪ {negp | p ∈ A \ I}.

Answer Set Optimization (aso)
Let π be a statement of the form x1 > · · · > xn : x, where
x, x1, . . . , xn (n ≥ 1) are atoms in a set A. For I ⊆ A, let
vπ(I) be 1 if x /∈ I or xi /∈ I for all i ∈ {1, . . . , n}, and oth-
erwise let vπ(I) be i, where i ∈ {1, . . . , n} is the smallest
integer such that xi ∈ I . For π being a set of statements of
the form x1 > · · · > xn : x, let asoπ denote the following
aso preference relation: {(I, J) | I, J ⊆ A, vπ(I) ≥ vπ(J)
for all π ∈ π}, where A is the set of atoms occurring in π.

For π of the form x1 > · · · > xn : x, let Aπ
be the set {xπi | i ∈ {1, . . . , n}}, where each xπi is a
fresh atom, and let eπ be the expansion I 7→ I ∪ {xπi |
i ∈ {1, . . . , n}, vπ(I) ≤ i}. For a set π of statements, let
Aπ be the union of all Aπ , for π ∈ π, and eπ be the expan-
sion function obtained by composing all eπ , in any order.
Theorem 3. Let asoπ be an aso preference relation overA.
Hence, ⊇Aπ is an eπ-reduction of asoπ .

Partially Ordered Set (poset)
Let � be a strict partial order over a set A of atoms, that
is, � is a subset of A × A, � is irreflexive (p 6� p for all
p ∈ A), and � is transitive (p1 � p2 and p2 � p3 implies
p1 � p3, for all p1, p2, p3 ∈ A). The strict partial order �
defines a preference relation over A; specifically, poset� is
the following preference relation:

{(I, I) | I ⊆ A} ∪ {(I, J) | I, J ⊆ A, I \ J 6= ∅,
for all p ∈ J \ I there is p′ ∈ I \ J such that p′ � p}.



An id -reduction of poset to lexicographic composition of
superset preferences will be given in the next section.

Composite Preferences
Let � be a preference relation over A. Let neg(�) be the
following preference relation over A: {(I, J) | I, J ⊆ A,
J � I}. The following statement links the negation of sim-
ple preferences by means of id -approximations.

Proposition 5. Preference relations ⊆A and ⊇A are id -
reductions of neg(⊇A) and neg(⊆A), respectively. Simi-
larly, for any w : A → Z, ≤wA and ≥wA are id -reductions
of neg(≥wA) and neg(≤wA), respectively.

Let �1, . . . ,�n be preference relations overA1, . . . ,An,
respectively, andA beA1∪· · ·∪An. Let and(�1, . . . ,�n)
be the following preference relation over A:

{(I, J) | I, J ⊆ A, I �i J and J �i I ∀i ∈ {1, . . . , n}}
∪ {(I, J) | I, J ⊆ A, I �i J ∀i ∈ {1, . . . , n}}.

Let lexico(�1) be �1, and lexico(�1, . . . ,�n) be

{(I, J) | I, J ⊆ A, I �1 J, and either I �1 J or
(I, J) ∈ lexico(�2, . . . ,�n)},

for n ≥ 2. Let pareto(�1, . . . ,�n) be

{(I, J) | I, J ⊆ A, I �i J ∀i ∈ {1, . . . , n}}.

As a direct consequence of their definitions, these com-
posite preferences can be flattened.

Proposition 6. Let �1, . . . ,�n be preference relations. For
all 0 ≤ k < m ≤ n, and for all ρ ∈ {and , lexico, pareto},
ρ(�1, . . . ,�k, ρ(�k+1, . . . ,�m),�m+1, . . . ,�n) is equal
to ρ(�1, . . . ,�n).

Moreover, lexico approximates the other two composite
preferences.

Theorem 4. Let �1, . . . ,�n be preference relations.
Hence, lexico(�1, . . . ,�n) is an id -approximation of
and(�1, . . . ,�n) and of pareto(�1, . . . ,�n).

As anticipated in the previous section, lexico can also en-
code poset preferences.

Theorem 5. Let � be a strict partial order over a set
A of atoms. Let Ai be {p ∈ A | ∃=i p

′ � p}. Hence,
lexico(⊇A0 , . . . ,⊇A|A|−1

) is an id -reduction of poset�.

Finally, lexico can also encode less-weight preferences.

Theorem 6. Given ≤wA, let n be⌈
log2(1 +

∑
p∈A w(p))

⌉
, and ewA be I 7→ I ∪{

xi−1 | i ∈ {1, . . . , n},
∑
p∈I∩A w(p) ≡ 0 mod 2i−1

}
,

where each xi is a fresh atom. Thus,
lexico(⊆{xn−1}, . . . ,⊆{x0}) is an ewA-reduction of ≤wA.

Normal Forms
This section introduces two normal forms for the preference
relations introduced in the previous sections, and shows how
to obtain them by applying approximations.

The lexico-weight normal form (LWNF) and the lexico-
subset normal form (LSNF) are the following:

lexico(≤w1

A1
, . . . ,≤wnAn)

lexico(⊆A1
, . . . ,⊆An)

where n ≥ 1, Ai is a set of atoms, and wi : Ai → Z, for all
i ∈ {1, . . . , n}.

The LWNF normalization starts with f := id , and per-
forms a depth-first search on the tree structure of the prefer-
ence relation in input. If a node N is not already in LWNF,
then N and possibly f are replaced as follows:
1. if N is ≥wA, then N :=≤−wA (Proposition 2);
2. if N is ⊆A, then N :=≤card

A (Proposition 3);
3. if N is ⊇A, then N :=≥card

A (Proposition 3);
4. if N is asoπ , then N :=⊇Aπ , and f := eπ ◦ f

(Theorem 3);
5. if N is poset�, then N := lexico(⊇A0

, . . . ,⊇A|A|−1
),

where Ai is {p ∈ A | ∃=i p
′ � p} (Theorem 5);

6. if N is neg(≤wA), then N :=≥wA (Proposition 5);
7. if N is ρ(≤w1

A1
, . . . ,≤wnAn), with ρ ∈ {and , pareto}, then

N := lexico(≤w1

A1
, . . . ,≤wnAn) (Theorem 4);

8. if N is the preference lexico(≤w1

A1
, . . . ,≤wkAk ,

lexico(≤wk+1

Ak+1
, . . . ,≤wmAm),≤wm+1

Am+1
, . . . ,≤wnAn), then

N := lexico(≤w1

A1
, . . . ,≤wkAn) (Proposition 6).

The LSNF normalization is similar, with N and f re-
placed as follows:
1. if N is ≤wA, then N := lexico(⊆{xn−1}, . . . ,⊆{x0}), and

f := ewA ◦ f , where n =
⌈
log2(1 +

∑
p∈A w(p))

⌉
and

each xi is a fresh atom (Theorem 6);
2. if N is ≥wA, then N :=≤−wA (Proposition 2);
3. if N is ⊇A, then N :=⊆Aneg , and f := eA

neg

(Proposition 4);
4. if N is asoπ , then N :=⊇Aπ , and f := eπ ◦ f

(Theorem 3);
5. if N is poset�, then N := lexico(⊇A0

, . . . ,⊇A|A|−1
),

where Ai is {p ∈ A | ∃=i p
′ � p} (Theorem 5);

6. if N is neg(⊆A), then N :=⊇A (Proposition 5);
7. if N is ρ(⊆A1

, . . . ,⊆An), with ρ ∈ {and , pareto}, then
N := lexico(⊆A1

, . . . ,⊆An) (Theorem 4);
8. if N is the preference lexico(⊆A1 , . . . ,⊆Ak ,

lexico(⊆Ak+1
, . . . ,⊆Am),⊆Am+1 , . . . ,⊆An), then

N := lexico(⊆A1 , . . . ,⊆An) (Proposition 6).
Theorem 7. Let � be a preference relation obtained by
composing less-weight, more-weight, subset, superset, aso,
poset, and, lexico, pareto. If N and f are the output of
the LWNF (or LSNF) normalization of �, then N is an
f -approximation of �.

Answer Set Programming
In this section, we concretize the previous approach in terms
of ASP. To this end, we start with some ASP background,
and then show how knowledge bases can be represented by



ASP programs, and how the join of knowledge bases can
be reduced to the union of ASP programs. As a result, ASP
solvers can be used to implement the previous algorithms.

A literal is an atom or the failure symbol ⊥, possibly pre-
ceded by (default) negation ∼. An ASP program Π is a set of
rules of the formH ← B, whereH andB are respectively a
disjunction and a conjunction of literals. Let atoms(Π) de-
note the set of atoms occurring in Π. Let {p} be a compact
representation of p ∨ ∼p ←, also called choice rule. For a
set A of atoms, let GA be the ASP program comprising a
choice rule {p} for each p ∈ A.

An ASP program Π is normal if each rule head in Π is
an atom, and is nondisjunctive if each rule head in Π is an
atom or empty. The dependency graph GΠ of Π has nodes
atoms(Π), an arc p →+ q if there is a rule with p in the
head and q in the body, and an arc p →− q if there is a rule
with p in the head and literal ∼q in the head or in the body.
Π is stratified if there is no cycle in GΠ involving a negative
arc (→−).

An interpretation I is a set of atoms. Relation |= is defined
as follows: I 6|= ⊥; for an atom p, I |= p if p ∈ I; I |= ∼p
if I 6|= p; I |= H ← B if I 6|= ` for some ` ∈ B, or I |= `
for some ` ∈ H; I |= Π if I |= r for all r ∈ Π. Let ΠI be
the program reduct obtained from Π by replacing each ∼p
with ⊥ if p ∈ I , and with ∼⊥ if p /∈ I . I is a stable model
of Π if I |= Π, and there is no J ⊂ I such that J |= ΠI . Let
SM (Π) denote the set of stable models of Π.

A weak constraint is of the form [w@l]  p, where p
is an atom, and w and l are integers called weight and
level. The preference relation �W associated with a set
W of weak constraints whose levels are l1 > · · · > ln
(for some n ≥ 0) is lexico(≤w1

A1
, . . . ,≤wnAn), where Ai is

{p | [w@li]  p ∈W}, and wi : p 7→
∑

[w@li]  p∈W w.
In order to apply the algorithms presented in the previ-

ous sections, some associations between ASP programs and
knowledge bases are required. First of all, an ASP program
Π defines the knowledge base (atoms(Π),SM (Π)). If clear
from the context, Π will be used to denote the associated
knowledge base.

Preference knowledge bases are defined by preference
programs. Let � be a preference relation over A, and Π�
be a program over A′ such that A ∪ A? ⊆ A′ and each
p ∈ A∪A? only occurs in rule bodies of Π�. Then, Π� is a
preference program for � if the projection of GA∪A

? ∪ Π�
on A∪A? is [�]. Complementary preference programs Π 6�
are defined analogously, replacing Π� and [�] by Π 6� and
[6�], respectively. If � is a preference relation over A such
that deciding whether I � J for I, J ⊆ A can be done in
polynomial time, then there is always some nondisjunctive
and stratified preference program Π� for �, and Π 6� can
be automatically constructed from Π�; see (Brewka et al.
2015b) for details.

Example 7. Below is a preference program for [⊂{a,b,c,d}]:

⊥ ← a,∼a? strict ← ∼a, a? ⊥ ← ∼strict
⊥ ← b,∼b? strict ← ∼b, b?

⊥ ← c,∼c? strict ← ∼c, c?

⊥ ← d,∼d? strict ← ∼d, d?

For example, {a, b} ∪ {a, b, c}? ∪ {strict} is a model of the
program above (extended with G{a,b,c,d}∪{a,b,c,d}

?

), while
neither {a, b}∪{b, c}? nor {a, b}∪{b, c}?∪{strict} are. The
complementary preference program is obtained by replacing
each x ∈ A with x? ∈ A? and vice versa, and each⊥ in rule
heads with a fixed atom ok that is forced to be true:

ok ← a?,∼a strict ← ∼a?, a ok ← ∼strict
ok ← b?,∼b strict ← ∼b?, b ⊥ ← ∼ok
ok ← c?,∼c strict ← ∼c?, c
ok ← d?,∼d strict ← ∼d?, d

For example, {a, b}?∪{b, c}∪{strict , ok} is a model of the
program above (extended with G{a,b,c,d}∪{a,b,c,d}

?

), while
{a, b}? ∪ {a, b, c} ∪X (for all X ⊆ {strict , ok}) is not. �

The knowledge bases (A, {I}) and (A, 2A \ {I}), for a
set of atoms A and I ⊆ A, can be respectively represented
by the ASP programs ΠA,I and GA ∪ ΠA,I , where ΠA,I
is {p ←| p ∈ I} ∪ {⊥ ← p | p ∈ A \ I} and ΠA,I is
{⊥ ←

∧
p∈I p ∧

∧
p∈A\I ∼p}. We drop A from ΠA,I and

ΠA,I whenever clear from context. Finally, for n ≥ 1, let
Πn denote the ASP program obtained from Π by replacing
all occurrences of atoms of the form p? with pn.

Under some conditions, joins of knowledge bases can be
obtained by unions of ASP programs, as formalized below.

Theorem 8. Let Π,Π′ be ASP programs such that each
p ∈ atoms(Π) may only occur in rule bodies of Π′. The
knowledge base Π on (Π′ ∪ Gatoms(Π)∩atoms(Π′)) is equiv-
alent to the knowledge base Π ∪Π′.

Thanks to Theorem 8 we can use unions of ASP programs
to represent the joins of knowledge bases of the algorithms
from the previous sections. Indeed, the following claim is
analogous to Proposition 1.

Proposition 7. Let Γ = (A,M) be a knowledge base de-
fined by program Π, � be a preference relation over A, and
Π� be a preference program for �. I ∈ M is a �-optimal
model of Γ if and only if Π ∪Π� ∪Π?

I is inconsistent.

Hence, the join of Algorithm 1 is represented by
Π ∪ Π� ∪ Π?

I . Similarly, the join of Algorithm 2 is repre-
sented by Π ∪ ΠI ∪ Πn

6� ∪ Πn
I , and the one of Algorithms 3

and 4 by Π∪ΠI∩A ∪Πn
6� ∪Πn

I∩A. Therefore, Algorithms 1
and 2 can be implemented using an ASP system for the pro-
cedure solve. Essentially, this corresponds to the solving al-
gorithm of ASPRIN presented in (Brewka et al. 2015b).

To implement Algorithms 3 and 4, instead, we also need
to represent expansion functions by expansion programs.
Let e : 2A → 2A

′
be an expansion function, and Πe be a

program over A′′ such that A′ ⊆ A′′ and each p ∈ A only
occurs in rule bodies of Πe. Then, Πe is an expansion pro-
gram for e if for all I ⊆ A, the program Πe ∪ {p←| p ∈ I}
has a unique stable model J such that J ∩ A′ = e(I). If e
is computable in polynomial time, then there is always some
normal and stratified expansion program Πe for e.

Example 8. Let π be the aso statement x1 > x2 > x3 : x.



Below is an expansion program Πe{π} for e{π}:

xπ1 ← ∼x xπ1 ← x1 xπ1 ← ∼x2,∼x3

xπ2 ← xπ1 xπ2 ← x2

xπ3 ← xπ2 xπ3 ← x3

For I ⊆ {x1, x2, x3}, or I ⊆ {x1, x}, Πe{π}∪{p←| p ∈ I}
has unique stable model I ∪{xπ1 , xπ2 , xπ3} = e(I). Similarly,
for I being {x, x2} or {x, x2, x3}, Πe{π} ∪ {p ←| p ∈ I}
has unique stable model I ∪ {xπ2 , xπ3} = e(I). Finally, for
I being {x, x3}, Πe{π} ∪ {p ←| p ∈ I} has unique stable
model I ∪ {xπ3} = e(I). �

Expansion programs can be used to represent knowledge
bases of the form e(Γ), as formalized next.

Proposition 8. Let Γ = (A,M) be a knowledge base de-
fined by program Π, e : 2A → 2A

′
be an expansion function,

and Πe be an expansion program for e. Then, the projection
of Π ∪Πe on A′ is e(Γ).

The following claim is analogous to Theorem 2.

Theorem 9. Let Γ = (A,M) be a knowledge base de-
fined by program Π, � be a preference relation over A,
e : 2A → 2A

′
be an expansion function represented by

program Πe, and �′ be an e-approximation of �. For any
I ⊆ A, if I ⊆ A′ is a �′-optimal model of the projection of
Π ∪Πe on A′, then I ∩ A is a �-optimal model of Γ.

Therefore, Algorithms 3 and 4 can be implemented in
ASP replacing e(Γ) by Π∪Πe, and using Algorithms 1 and 2
for procedures solveOpt and enumOpt , provided that pro-
grams Π 6�, Π�′ and Π 6�′ are available.

Alternatively, procedures solveOpt and enumOpt can
be implemented calling directly an ASP solver, whenever a
native method for computing �′-optimal stable models is
available. In CLASP, this is the case for preference relations
represented in the normal forms LWNF and LSNF. In the
first case, if �′ has the form lexico(≤w1

A1
, . . . ,≤wnAn),

�′-optimal models correspond to �W -optimal
models, where W is the set of weak constraints
{[wi(p)@n − i + 1]  p | i ∈ {1, . . . , n}, p ∈ Ai}. In
the second case, if �′ has the form lexico(⊆A1 , . . . ,⊆An),
�′-optimal models can be computed by CLASP’s heuris-
tic directives: {#heuristic p. [n-i+1,false]|
i ∈ {1, . . . , n}, p ∈ Ai}; see (Gebser et al. 2015) for
details. In fact, we can apply this approach to any preference
relation obtained by composing relations from above, given
that we have shown how to approximate them by preference
relations in normal form (Theorem 7).

Implementation
The third version of ASPRIN (Brewka et al. 2015b; 2015a)
(https://potassco.org/asprin) implements ap-
proximations by calling an ASP solver for procedures
solveOpt and enumOpt . Option --approximation=weak
activates the method using weak constraints, while
--approximation=heuristic activates the method us-
ing heuristic directives. Here we illustrate the weak mode
by means of an example. (The description of the heuristic
mode is analogous; weights are unary encoded in the current

implementation of the heuristic mode, and a one-to-one
implementation of Theorem 6 is left as future work.)

The following lines are part of an ASPRIN program that
defines predicates a/1, b/1 and dom/1:
#preference(p1,subset) { a(X) : dom(X) }.
#preference(p2,subset) { b(X) : dom(X) }.
#preference(p3,pareto) { **p1; **p2 }.
#optimize(p3).

The first line defines preference statement p1 of type
subset, declaring the subset preference relation over atoms
of predicate a. Preference statement p2 declares a subset
preference relation over b. Statement p3 combines p1 and
p2 by pareto. Finally, the optimize statement of the last
line instructs ASPRIN to compute p3-optimal models.

Preference types (subset, pareto, etc.) are encoded in
ASPRIN by ASP programs. Many preference types (includ-
ing all ones studied here) are already encoded in ASPRIN’s
library, which can be extended by simply adding other ASP
programs. These encodings rely on the reification of the
preference statements generated by the system. For our ex-
ample, the reification produces the following rules (where
for simplicity we replaced some terms by symbol _):
p(p1,subset). p(p2,subset). p(p3,pareto).
p(p1,_,_,for(a(X)),_) :- dom(X).
p(p2,_,_,for(b(X)),_) :- dom(X).
p(p3,_,_,name(p1),_). p(p3,_,_,name(p2),_).
optimize(p3).

Moreover, the atoms appearing in the preference statements
are made accessible via predicate holds/1:
holds(a(X)) :- a(X), dom(X).
holds(b(X)) :- b(X), dom(X).

For the weak mode, ASPRIN requires the implementation
of so-called weak approximation programs. They contain
three elements: (1) the expansion program of the approx-
imation (empty in our example); (2) the definition of the
corresponding preference relation in LWNF using predicate
wc(P,W,L,X) (which means that for preference P, atom X
has weight W at level L); and (3) a mapping of wc/4 into
weak constraints. For subset and pareto we have the fol-
lowing rules:
wc(P,1,1,X):- p(P,subset),p(P,_,_,for(X),_).
wc(P,W,L2,X):-p(P,pareto),

p(P,_,_,name(P1),_),
wc(P1,W,L1,X),map(P,P1,L1,L2).

:∼ wc(P,W,L,X),optimize(P),holds(X). [W@L,X]

The first rule gives weight 1 at level 1 to atoms X appear-
ing in a subset preference; this corresponds to item 2 of
the LWNF normalization, using Proposition 3. The second
rule maps pareto to lexico, which is flattened at the same
time; this corresponds to items 7–8 of the LWNF normaliza-
tion, using Theorem 4 and Proposition 6. Note that the rule
uses atom map(P,P1,L1,L2) to represent that level L1 of
preference P1 is mapped to level L2 in P; the definition of
map/4 is omitted for simplicity. Finally, the last rule acti-
vates the weak constraints associated with the preference to
be optimized, using predicate holds/1 to refer to the orig-
inal atoms. The encoding can be directly used in ASPRIN to
compute one optimal model, and together with a preference
program can be used to enumerate many models.



Experiments
We now evaluate our approach by contrasting its implemen-
tation with the one of ASPRIN. To this end, we consider the
following variants: basic ASPRIN (B), ASPRIN in heuristic
approximation mode (H), ASPRIN in weak approximation
mode with CLASP’s iterative algorithm (I), and ASPRIN in
weak approximation mode with CLASP’s unsat core algo-
rithm (U). These implementations are evaluated in view of
computing a single and all optimal models.

The dedicated solving techniques used in H, I, and U
have already proved their merits in various settings. This
is mainly due to their highly optimized implementation in
existing ASP solvers. Hence, we expect that their use leads
to an improvement when computing a single model. As for
computing several models, heuristic mode must use Algo-
rithm 3 for enumeration (because CLASP does not support
Algorithm 4 in this mode), while for weak mode we opt
for using Algorithm 4. For the latter we expect a general
improvement from using CLASP’s inner enumeration im-
plementation. However, we are solving different problems
when approximating, and the approximated problems may
behave differently than the original ones. For instance, it is
usually easier to compute a subset minimal model than a
cardinality minimal one. On the other hand, it is not clear
whether this difference persists when we enumerate all op-
timal models, since in this case we have to go through the
whole search space. For instance, a larger part of the search
space can be pruned after computing the first cardinality op-
timal model than after computing the first subset minimal
one. This could lead to reversed roles in enumeration.

All experiments ran on an Intel Xeon 2.20GHz processor
under Linux. Each run was limited to 1 hour runtime and
8GB of memory. Each instance was ran twice, once to com-
pute one optimal model, and another time to compute all
optimal models. We report the aggregated results per bench-
mark class: number of timeouts (in parentheses, if applica-
ble), average runtime in seconds for computing one model,
and velocity for computing all models (i.e., number of com-
puted optimal models divided by runtime in hours).

In our first two experimental series, we use the benchmark
set from (Brewka et al. 2015b) comprising 193 benchmark
instances from eight different classes: 15-Puzzle, Cross-
ing, and Valves stem from the ASP competitions of 2009
and 2013; Ricochet Robots from (Gebser et al. 2013a), for
which subset and cardinality minimal models coincide, Cir-
cuit Diagnosis from (Siddiqi 2011) and adapted to ASP
in (Gebser et al. 2013b), Metabolic Network Expansion
from (Schaub and Thiele 2009), Transcription Network Re-
pair from (Gebser et al. 2010), and Timetabling from (Ban-
bara et al. 2013). All classes involve a single optimization
statement; Valves and Timetabling deal with weight sum-
mation, all others with cardinality. In what follows, we only
use the more general term ‘weight’ (and drop ‘cardinality’).

We report in Table 1 results obtained on weight opti-
mizing benchmarks (marked by Σ) and their ⊆-minimizing
counterparts. The latter are obtained from the above bench-
marks by replacing weight by subset optimization. Note that
⊆-minimal models form a superset of cardinality minimal
ones. Considering the first series (Σ), we observe that unsat-

core-based approximation (U) performs best by far when
computing a single optimum — except for Valves. Here, it-
erative approximation works better, slightly outperforming
plain ASPRIN. The two latter exhibit a similar behavior on
the other classes. In this setting, the heuristic variant of AS-
PRIN (H) performs worst, although it even gets close to U
on Ricochet and Crossing. The overall trend changes when
computing all optimal models and the roles of I and U are re-
versed. This is insofar surprising since in both cases the ASP
solver is used to enumerate all models sharing the objective
value of the initially found optimal model. We have no clear
explanation but conjecture that this is due to learning effects.
Generally, I and U have a higher velocity and thus compute
more models than basic ASPRIN, and in turn its heuristic ex-
tension H. In addition, we also ran CLASP using its builtin
iterative and unsat-core-based optimization, and its perfor-
mance was similar to ASPRIN using I and U approximation,
respectively. This shows that the latter generate no compu-
tational overhead. Also, our approximate algorithms allow
us to overcome a previous performance gap between CLASP
and ASPRIN when dealing with weight optimization.

When switching to ⊆-optimization, U keeps its pole po-
sition but H is on a par. As above, Valves and now also
Crossing are exceptions where ASPRIN is better. The iter-
ative approximation performs well but is generally slower.
When enumerating ⊆-optimal models, unsat-core-based ap-
proximation U has a clear edge over all others, especially on
classes with many optimal models. For instance, all methods
time out on Expansion, Repair and Diagnosis due to over-
whelmingly many optimal models. However, many more
models are computed by both weak approximations U and I
since they take advantage of CLASP’s inner functionality.

Table 2 summarizes our results with aggregated prefer-
ence. The first series (`) deals with lexicographically ordered
weight preferences, and the second (℘) with the combina-
tion of subset preferences according to the Pareto principle.
In both cases, the corresponding benchmark instances are
obtained from the aforementioned sets by dividing their op-
timization statements in 16 parts, as detailed in (Brewka et
al. 2015b). Again, unsat-core-based approximation U has a
clear edge in the first series `. When computing one optimal
model, exceptions occur on Ricochet and Valves where H
and I perform best. The basic ASPRIN setting performs worst
overall. As above, this is to be expected since U and I exploit
CLASP’s implementation, which includes lexicographic ag-
gregation. These observations carry over to the enumeration
of optimal models, where U is best, followed by I, H, and
B. Mixed results are obtained when computing one Pareto-
optimal model (℘). Here, the heuristic approach H performs
quite well — except on Valves. When computing all Pareto-
optimal models, we observe the familiar pattern: the field
is dominated by the approximation techniques U and I, fol-
lowed by H and B.

Next, we evaluate our approach on poset benchmarks.
For this, we draw upon a corresponding benchmark set in
(Brewka et al. 2015a), which is itself a selection of ran-
dom and structured SAT instances provided by (Di Rosa,
Giunchiglia, and Maratea 2010) and translated to ASP in
the straightforward way (cf. (Niemelä 1999)). Interestingly,



B,Σ H,Σ I,Σ U,Σ B,⊆ H,⊆ I,⊆ U,⊆
Ricochet 207, 34 35, 267 217, 24 32, 279 156, 38 32, 262 232, 24 32, 274
Timetabling (3) 1226, 164 (11) 3300, 63 (1) 318, 2128 2, 3158 92, 207 2, 2226 32, 1251 3, 2189
15-puzzle 35, 144 395, 16 36, 130 16, 143 10, 4365 27, 2480 37, 11158 16, 13018
Crossing 63, 931 11, 352 41, 1963 5, 698 0, 729 2, 13349 43, 16553 5, 40776
Valves 39, 549 (10) 1900, 79 37, 585 (20) 2725, 117 17, 895 (18) 2312, 246 60, 1051 240, 451
Expansion 94, 1893 (29) 3485, 3 40, 6492 3, 14273 24, 105 3, 7582 41, 4697 3, 8070
Repair 74, 1083 (30) 3600, 0 25, 30239 1, 11810 5, 670 1, 4183 26, 17764 1, 47002
Diagnosis 192, 410 37, 485 46, 48789 0, 30370 16, 105 0, 14232 46, 79800 1, 429557

Total (3) 241, 651 (80) 1595, 158 (1) 95, 11294 (20) 348, 7606 40, 889 (18) 297, 5570 65, 16537 38, 67667

Table 1: Experimental results on weight (Σ) and subset (⊆) optimization

B,` H,` I,` U,` B,℘ H,℘ I,℘ U,℘

Ricochet 188, 41 37, 234 223, 24 175, 72 248, 30 36, 256 229, 24 200, 69
Timetabling (10) 3007, 31 (11) 3300, 209 29, 454 8, 899 65, 133 7, 1086 24, 664 8, 1170
15-puzzle 24, 176 (7) 3600, 0 23, 210 47, 241 10, 3472 319, 263 23, 1305 50, 383
Crossing 5, 801 13, 979 1, 2886 0, 4763 1, 752 4, 4211 1, 1714 0, 2929
Valves 22, 615 (15) 1975, 224 35, 570 137, 655 21, 984 (16) 2089, 241 25, 968 98, 784
Expansion (6) 1702, 0 24, 171 81, 129 3, 1303 18, 184 3, 796 82, 2167 3, 3577
Repair (21) 2529, 0 20, 208 2, 2563 2, 3419 3, 610 1, 1854 2, 2271 2, 2733
Diagnosis (30) 3600, 0 1, 6408 42, 9269 0, 50068 2, 846 0, 6464 42, 10673 0, 10673

Total (67) 1385, 208 (33) 1121, 1054 54, 2013 46, 7678 46, 876 (16) 308, 1896 54, 2473 45, 2790

Table 2: Experimental results on lexicographic (`) and Pareto (℘) optimization

B H I U

d0 1, 753 0, 3410 (100) 3600, 0 (100) 3600, 0
d0.00621 1, 620 1, 1004 (100) 3600, 0 (100) 3600, 0
d0.04972 19, 56 (11) 782, 289 (100) 3600, 0 (100) 3600, 0
d0.02486 7, 156 (8) 509, 787 (100) 3600, 0 (100) 3600, 0
d0.01243 2, 424 29, 378 (100) 3600, 0 (100) 3600, 0
d1 79, 40 (13) 784, 26 (100) 3600, 0 (100) 3600, 0

Total 18, 342 (32) 351, 982 (600) 3600, 0 (600) 3600, 0

maxsat 143, 138 111, 2319 (3) 384, 18846 (1) 155, 14542
pbo-mqc nencdr 9, 2444 (8) 481, 790 80, 811 (8) 512, 113
pbo-mqc nlogencdr 5, 3337 96, 1079 23, 1903 74, 346
primes (16) 407, 5429 (17) 415, 6875 (52) 1274, 28398 (39) 957, 49685
routing 3, 9630 12, 9389 306, 32549 1, 32501
minone 53, 2637 56, 2693 (1) 267, 11169 60, 20034

Total (16) 103, 3936 (25) 195, 3857 (56) 389, 15613 (48) 293, 19537

Table 3: Experimental results on poset optimization

this benchmark set was used in (Brewka et al. 2015a) to
demonstrate that ASPRIN is at eye level with the dedicated
implementation of poset described in (Di Rosa, Giunchiglia,
and Maratea 2010). Surprisingly, basic ASPRIN is indeed the
most effective approach for solving the random instances,
listed in the first half of Table 2, followed by its heuristic-
driven variant H. Our formerly impressing approximation
techniques I and U fail to solve a single instance in time;
tuning CLASP parameters gave no improvement either. This
illustrates nicely how our approximation may result in much
harder problems than the original one. The picture changes
slightly when dealing with structured problems, reflected by
the second half of Table 2. Although the basic approach is
still superior, and still followed by its heuristic variant, our
weak approximation techniques are not completely lost, and
they manage to enumerate more models.

We refrain from giving detailed results on our evalua-
tion with aso preferences, since the available benchmarks
are randomly generated (Zhu and Truszczyński 2013) and
we thus obtain similar results as with poset on random in-
stances: Our approximations I and U fail to solve a single
instance in time. The basic approach is best for computing
one optimal model, and H is better when computing many.

Conclusion

Several qualitative and quantitative preference relations are
linked by the notion of approximation given in this paper.
Such links are not only interesting from a theoretical point
of view, but actually put in practice by our implementation
in ASPRIN. Interestingly, preference relations are encoded
by ASP facts, and each approximation is a module compris-
ing ASP rules for encoding the expansion function and the
target preference relation. The system is therefore open to
the addition of new approximations.

The two normal forms considered in this paper are mo-
tivated by the fact that weak constraints and heuristic di-
rectives, native constructs of CLASP, actually define lexico-
graphic compositions of less-weight and subset preference
relations. Hence, thanks to our normalization procedures,
ASPRIN can now take advantage of several highly optimized
algorithms implemented by CLASP for computing optimal
solutions. Specifically, we tested the following strategies of
CLASP: domain heuristic, iterative, and unsatisfiable core
analysis. Our experiments register a performance improve-
ment of ASPRIN, more evident in the enumeration of optimal
models.
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