A Compilation of Brewka and Eiter’'s Approach to
Prioritization

James P. DelgrandgTorsten Schauts, and Hans Tompits

! School of Computing Science, Simon Fraser University,
Burnaby, B.C., Canada V5A 1Sfin@cs.sfu.ca
2 |nstitut fur Informatik, Universiét Potsdam,
Postfach 601553, D-14415 Potsdam, Germtomgten@cs.uni-potsdam.de
3 Institut fur Informationssysteme 184/3, Technische Univéatalien,
FavoritenstraBe 9-11, A-1040 Wien, Austt@npits@kr.tuwien.ac.at

Abstract. In previous work, we developed a framework for expressing general
preference information in default logic and logic programming. Here we show
that the approach of Brewka and Eiter can be captured within this framework.
Hence, the present results demonstrate that our framework is general enough
to capture other independently-developed methodologies. As well, since the ex-
tended logic program framework has been implemented, we provide an imple-
mentation of the Brewka and Eiter approach via an encoding of their approach.

1 Introduction

In previous work [6], we presented a general framework based on default logic for
expressing general preference information. There, we addressed the problem of repre-
senting preferences among individual and aggregated properties in default logic. In this
approach, one begins with an ordered default theory, in which preferences are specified
on default rules. This is transformed into a second, standard, default theory in which
the preferences are respected, in the sense that the obtained default extensions contain
just those conclusions that accord with the order expressed by the original preference
information. The approach is fully general: One may specify preferences that hold by
default, or give preferences among preferences, or give preferences among sets of de-
faults.

We adapted this approach in [8] for logic programming under the answer set se-
mantics [10]. While the original approach is usable for full-fledged theorem provers for
default logic, likeDeReS[5], this subsequent approach applies to logic programming
systems, such adlv [9] or smodels [13]. In fact, we have provided an implemen-
tation of the approach in extended logic programs, serving as a front-edé/foand
smodels (see [7] for details).

In the context of default logic, our methodology involves the appropriate “decom-
position” of default rules, so that one can detect the applicability conditions of default
rules and control their actual application. In our framework, this is carriedvithin
a default theory. This is accomplished, first, by associating a unique name with each

* Affiliated with the School of Computing Science at Simon Fraser University, Canada.

default rule, so that it can be referred to within a theory. Second, special-purpose pred-
icates are introduced for detecting conditions in a default rule, and for controlling rule
invocation. This in turn allows a fine-grained control over what default rules are applied
and in what cases. By means of these named rules and special-purpose predicates, one
can formalise various phenomena of interest.

Given an ordered default theofy, W, <), where< is a strict partial order o,
the intuition is that one applies the-maximal default(s), if possible, then the next
greatest, and so on. Thus we adoptescriptiveinterpretation of the ordering, in that
prescribes the order in which rules are applied. This can be contrasteddeisiciaptive
interpretation, in which the preference order represents a ranking on desired outcomes:
the desirable (or: preferred) situation is one where the most preferred default(s) are
applied.

The approach of Brewka and Eiter [3], first developed with respect to extended logic
programs and subsequently generalized for default logic in [4], arguably fits the “de-
scriptive” interpretation. In common with previous work, Brewka and Eiter begin with
a partial order on a rule base, but define preference with respect to total orders that con-
form to the original partial order. As well, answer sets or extensions, respectively, are
first generated and the “prioritized” answer sets (extensions) are selected subsequently.
In contrast, in our approach, we deal only with the original partial order, which is trans-
lated into the object theory. As well, only “preferred” extensions are produced in our
approach; there is no need for meta-level filtering of extensions.

However, we show here that the approach of Brewka and Eiter is expressible in our
framework. Consequently, this serves to show the scope and generality of our frame-
work. As well, this result enables a straightforward implementation of the Brewka and
Eiter approach.

In the next subsection we briefly introduce default logic, while Sections 3 and 4
introduce our approach and Brewka and Eiter’s, respectively. Section 5 describes the
translation of their approach expressed in default logic, while Section 6 does the same
for the case of extended logic programs. Section 7 gives brief concluding remarks.

2 Background

Default logic [15] augments classical logic dgfault rulesof the form

a ﬁlw'wﬁn
Y

wherea, (1, ..., B, v are sentences of first-order or propositional logic. Here we
mainly deal withsingular defaults for whichn = 1. A singular rule isnormalif 3 is
equivalent toy; it is semi-normalf 5 implies+~. [11] shows that any default rule can be
transformed into a set of semi-normal defaults. We sometimes denopeettegjuisite

« of a defaulty by Prereq¢), its justification 5 by Justif(¢), and itsconsequent by
Consedd). Accordingly, Prereq D) is the set of prerequisites of all default rules in

D; Justif(D) andConse@D) are defined analogously. Empty components, such as no
prerequisite or even no justifications, are assumed to be tautological (we speak in such
cases ofprerequisite-freeand justification-freedefaults, respectivelyOpen defaults

with unbound variables are taken to stand for all corresponding instances. A set of
default rulesD and a set of sentenc#g form adefault theory(D, W) that may induce
a single, multiple, or even zemxtensiondn the following way:

Definition 1. Let (D, W) be a default theory and let’ be a set of sentences. Define
Ey = W and for: > 0:

GD; = { @Bl ¢ D)o € By ¢ Bvoo, =B ¢ B
Ei+1 = Th(El) U {CO”SEQ(S) | XS GDL}

Then,E is an extension fotD, W) iff E = ;2 E;.

(Th(E) refers to the logical closure of sét of sentences.) Any such extension rep-
resents a possible set of beliefs about the world at hand. The above procedure is not
constructive sinceE appears in the specification ¢ID;. We defineGD(D, E) =
U;=, GD; as the set ofjenerating defaultsf extensionE. An enumeration(s;);c;
of default rules isggroundedin a set of sentencdd’, if we have for everyi € I that
W U Consed{do, . ..,d,—1}) - Prereqd;).

For simplicity, we restrict our attention in what follows to finite, singular default
theories, consisting of finite sets of default rules and sentences.

3 Preference-Handling in Standard Default Logic

For adding preferences among default rules, a default theory is usually extended with
an ordering on the set of default rules. In accord with [4], we define:

Definition 2. A prioritized default theory is a tripl¢D, W, <) where(D, W) is a de-
fault theory andk is a strict partial order onD.

In contrast to [4], however, we use the orderingn the sense of “higher priority”, i.e.,
d < & expresses that has “higher priority” thars.

The methodology of [6] provides a translatidh, that takes such a prioritized the-
ory (D, W, <) and translates it into a regular default the@ry(D, W, <)) = (D', W’)
such that the explicit preferences<nare “compiled” intoD’ andW’ and such that the
extensions of D', W’) correspond to the “preferred” extensions(&f, W, <). More-
over, the approach admits not only “static” preferences as discussed here—where the
ordering of the defaults is specified at the meta-level—but also “dynamic” preferences
within the object language

In [6], to begin with, a unique name is associated with each default rule. This is
done by extending the original language by a set of constavitsuch that there is a
bijective mapping: : D — N. We writen; instead of:(9) (and abbreviate;, by n; to
ease notation). Also, for default ruidewith namen, we sometimes write : § to render
naming explicit. To encode the fact that we deal with a finite set of distinct default

1 McCarthy effectively first suggested the naming of defaults using a sepafcfunctions [12];
Theorist [14] uses atomic propositions to name defaults.

rules, we adopt a unigue names assumption (WNAnd domain closure assumption
(DCA) with respect taV. That is, for a name séf = {ny,...,n,,}, we add axioms

UNAy : (TLZ 75 nj) for all ni,n; € N with Z;é],
DCAy : Vz.name(z) =(x =n1 V- - VI =ngy).

For convenience, we writéz € N. P(z) instead oVz. name(z) D P(x).

Givend; < §;, we want to ensure that, befofie is applied,s; can be applied or
found to be inapplicable.

More formally, we wish to exclude the case whétec GD,, buté; ¢ GD,, al-
thoughd; € GD,, for somem > n in Definition 1. For this purpose, we need to be
able to (i) detect when a rule has been applied or when a rule is blocked, and (ii) control
the application of a rule based on other antecedent conditions. For a defauff-fule
there are two cases for it to not be applied: it may be that the antecedent is not known to
be true (and so its negation is consistent), or it may be that the justification is not con-
sistent (and so its negation is known to be true). For detecting this case, we introduce a
new, special-purpose predicdtk-). Similarly we introduce a predicats(-) to detect
when a rule has been applied. To control application of a rule we introduce predicate
ok(-). Then, a default rulé = 22 is mapped to

aNok(ns) : B ok(ns) : a8 Aok(ns) :

yAap(ns) bl(ns) bl(ns) (1)

These rules are sometimes abbreviated by, , d»,, respectively. Whilé, is more or
less the image of the original rule rulesd,, andd,, capture the non-applicability of
the rule.

None of the three rules in the translation can be applied unldss) is true. Since
ok(+) is a new predicate symbol, it can be expressly made true in order to potentially
enable the application of the three rules in the image of the translatiok(#if) is true,
the first rule of the translation may potentially be applied. If a rule has been applied,
then this is indicated by asserting(ns). The last two rules give conditions under
which the original rule is inapplicable: either the negation of the original antecedent
is consistent (with the extension) or the justificatigris known to be false; in either
such caseél(ns) is concluded.

We can assert that default : % is preferred ton; : “W—ﬁ in the object lan-
guage by introducing a new predicate, and then asserting that < n;. However,
this translation so far does nothing to control the order of rule application. Nonetheless,
for §; < &; we can now control the order of rule application: we can assert that if
has been applied (and sp(n;) is true), or known to be inapplicable (and!sin;) is
true), then it isok to applyd;. The idea is thus tdelaythe consideration of less pre-
ferred rules until the applicability question has been settled for the higher ranked rules.
Formally, this is realized by adding the axiom

Vo € N.[Vy € N.(z <y) D (bl(y) Vap(y))] D ok(x) (2)

to the translation.

To summarize, lef (D, W, <)) = (D, W) be the translation obtained in this way,
for a given prioritized default theoryD, W, <). Then, the prioritized extensions of
(D, W, <) are determined by the (regular) extensiong0f W), modulo the original
language.

It is important to note that this translation schema is just one possible preference
strategy. Changes to the conditions when a default is considered to be applicable (real-
ized by the specific form of the decomposed defadlli9,, , d», and axiom (2)) result
in different preference strategies. Also, further rules and special-purpose predicates can
be added, if needed. For instance, in Sections 5 and 6 we rely on an additional predicate
ko(-) that aims at eliminating rules from the reasoning process.

4 Brewka and Eiter's Approach to Preference

We now describe the approach to dealing with a prioritized default theory introduced
in [4]. First, partially ordered default theories are reduced to totally ordered’ones.

Definition 3. A fully prioritized default theory is a prioritized default thedi®, W, <)
where< is a total ordering.

The general case of arbitrary prioritized default theories is reduced to this restricted
case as follows.

Definition 4. Let (D, W, <) be a prioritized default theory. Thel; is a prioritized
extension of D, W, <) iff F is a prioritized extension of some fully prioritized default
theory(D, W, <’) such that<C<’.

Conclusions of prioritized default theories are defined in terms of prioritized exten-
sions, which are a subset of the regular extensions of a default theory, i.e., the extensions
of (D, W) according to [15].

The construction of prioritized extensions relies on the notioaabfrenes$l, 2].

A default$ is activein a set of formulasS, if (i) Prereqd) € S, (i) —~Justif(§) & S,
and (iii) Consed) ¢ S hold. Intuitively, a default is active i if it is applicable with
respect toS but has not yet been applied.

Definition 5. LetA = (D, W, <) be afully prioritized prerequisite-free default theory.
The operatorC is defined as follows'(A) = | J,~, E:, whereEy, = Th(W), and for
everyi > 0, a

Uj<i B if no default fromD is active in{J, _; Ej;
E; = Th(U,; E; U {Conseqs)}) otherwise, wheré € D is the maximal
default(w.r.t. <) active in{J, _, E;.

In the case of prerequisite-free, normal default theories, the op&ratlwvays produces
an extension in the sense of [15] and thus can directly be used to define prioritized
extensions:

2 |n fact, [4] deal with so-calleavell-orderings which are generalised total orderings, needed
for treating infinite domains.

Definition 6. Let A = (D, W, <) be a fully prioritized prerequisite-free, normal de-
fault theory. ThenF is the prioritized extension a iff E = C(A).

The next definition addresses the more general class of prerequisite-free theories:

Definition 7. LetA = (D, W, <) be afully prioritized prerequisite-free default theory.
Then, a sef of formulas is a prioritized extension ¥ iff £ = C(AF), whereAF =
(DF,W,<)andD¥ = D\ {6 € D | Conseq)) € E and-Justif(§) € E}.

That is, A is obtained fromA by deleting all defaults whose consequents ar&in
and which are defeated ifi. Clearly, this leaves normal rules unaffected. The purpose
of this filter is illustrated in [4] by the following default theory:

Ag=({m: 358 mp: 28 my s A ny BV 0.{6, <8 |i<i)). (3

This theory has two regular extensiori$;({A, B}) and Th({~A, B}). Applying op-
eratorC' to Az yields the first extension. However, it is argued in [4] that this extension
does not preserve priorities because deféuls defeated inE by applying a default
which is less preferred thain, namely defaults. This extension is ruled out by the fil-
ter in Definition 7 becaus&h({A, B}) # Th({—A,B}) = C(Agh({A’B})). Theory

Az has therefore no prioritized extension.

The next definition accounts for the general case by reducing it to the prerequisite-
free one. For checking whether a given regular extengias prioritized, Brewka and
Eiter evaluate the prerequisites of the default rules according to the exténsiarthis
end, for a default, defines " as the prerequisite-free version®fi.e.,s ' results from
0 by replacingPrereqo) by T.

Definition 8. Let A = (D, W, <) be a fully prioritized default theory anfl’ a set of
formulas. The default theodr = (Dg, W, <g) is obtained fromA as follows:

1. Dg ={6"T | 6 € D and Prereqs) € E};
2. forany(y, (s € D, (1 <p G iff 61 < 5y whered; = max{§ € D | §T = (;}.

In other words D is obtained fromD by (i) eliminating every defauli € D such that
Prereqd) ¢ E, and (ii) replacindPrereqd) by T in all remaining defaults.

Definition 9. LetA = (D, W, <) be a fully prioritized default theory. The#f;is a pri-
oritized extension of\, if (i) E is a classical extension af, and(ii) E is a prioritized
extension ofAg.

Thatis, (i) is equivalent taf = C((Ag)¥).
For illustration, consider [4, Example 4]:

p<p <A @
and whereW = (. This theory,A, has two regular extension&; = Th({A, B})
andE, = Th({A,~B}). Ag, amounts to:f < =2 < B Clearly, (Ag,)" =
Apg, . Also, we obtain thaC(Ag,) = F4, that is, E; is a prioritized extension. In
contrast to thisF, is not prioritized. WhileAg, = Ag, and(Ag,)?? = Ag,, we get
C((Ag,)??) = Ey # E,. Thatis,C((Ag,)"?) reproduces?; rather than®,.

This example reveals the difference between the prescriptive methodology of [6]
discussed in the previous section, and Brewka and Eiter's descriptive approach dis-
cussed here, insofar as the former method actually seteqgtsioritized extensionn-
tuitively, this can be explained by the observation that for the highest-ranked default
AifB, neither applicability nor blockage can be asserted: Either of these properties relies
on the applicability of lesser-ranked defaults, effectively resulting in a circular situation
destroying any possible extension. Nonetheless, as we show next, the methodology of
[6] is general enough to admit a suitable preference strategy enforcing the simulation
of prioritized extensions in the sense of Definition 9.

5 Prioritized Extensions via Standard Default Logic

Given an alphabeP of some languag€p, we define a disjoint alphab@&’ asP’ =
{p’ | p € P} (so implicitly there is an isomorphism betwe@hand P’). Then, for
a € Lp, we definea’ € Lp/ as the result of replacing in each propositiop from
‘P by the corresponding propositigri in P’. This is defined analogously for sets of
formulas, default rules and sets of default rules. We abbreyiatand L/ by £ and
L', respectively.

We obtain the following translation mapping prioritized default theories in some
languagel onto standard default theories in the langu@jeobtained by extending
L U L' by new predicates symbol(s < -), ok(:), ko(+), bl(-), andap(-), and a set of
associated default names:

Definition 10. Given a prioritized default theonA = (D, W, <) over £ and its set of
default namesV = {ns | 6 € D}, defineZpg(A) = (D°, W*°) overL® by:

o __ ok(ns)Aa: 8,8 ok(ns):—a,ma’ ok(ns)A-BA-E": _ a:fB
D° = DU { Hmiedl Ko lanel, Koy 5= L€ D} (5)

ool | oo epju{===a} @
we=wuw (7
U {n1 < na | (61,02) € <} U{DCAN,UNAyN} (8)

U {Vz € N. [Vy € N.ko(y) V [(x < y) D (bl(y) v ap(y))]] Dok(z)} (9)

We denote the second group of rules in (S5)}Hydy , anddy ; those in (6) are abbrevi-
ated byo?, 47, andd] , respectively.

It is important to note that the inclusiod3 C D° andW C W* hold. As we
show in Theorem 2, this allows us to construct regular extensiof®oW) within
extensions of D°, W°). Such an extension can be seen asghessin a guess-and-
check approach; it corresponds to Conditigrir{ Definition 9.

The salient part of the correspondinfeck viz. Condition (i) in Definition 9, is
accomplished by the second group of rules in (5) and the remaining fa@ts irto-
gether withiW’ C We, the rules of formy; aim at rebuilding the guessed extension in
L'. They form the prerequisite-free counterpart of the original default theofy.iim
fact, the prerequisite of° refers viax to the guessed extension4h no formula in£’
must be derived for applying’. This accounts for the elimination of prerequisites in

Condition (1) of Definition 8. Moreover, the elimination of rules whose prerequisites
are not derivable is accomplished by rules of fan Rules of formjy, guarantee that
defaults are only defeatable by rules with higher priority. In fact, it that must be
derivable in such a way only.

The application of rules according to the given preference information is enforced
by axiom (9): For every;, we deriveok(n;) whenever, for every,;, eitherko(n;) is
true, or, ifn; < n; holds, eithemp(n;) or bl(n;) is true. This axiom allows us to derive
ok(n;), indicating that; may potentially be applied, whenever we have foaNvith
0; < 0; thaté; has been applied or cannot be appliedj,anas already been eliminated
from the preference handling process. This elimination of rules is in accord with Def-
inition 7 and realized by, . The preference information in (8) is rendered complete
through rules of formd?,. This completion is necessary for the formula in (9) to work
properly: wheneve(s;, §;) ¢ <, rule §% allows us to conclude (in the extension) that
—\(n,’ < nj) holds.

Lastly, 69 rules out unsuccessful attempts in rebuilding the regular extension from
L within £’ according to the given preference information. In this way, we eliminate all
regular extensions that do not respect preference.

For illustration, reconsider theory (4), viz.

. 2A . 22B .A:B
n37<n2ﬁ<n17

andW = (). Recall that this theory has two regular extensions: one contajeing B}
and another containingA, B}; but that only the latter is a prioritized extension accord-
ing to [3]. We get:

cA =B A:B
A -B B
ok(nz): A,A’ ok(nz):—=B,~B’ ok(ni)AA:B,B’ : —ok(n1)V—ok(nz)V-ok(ns)
A’ Nap(n3) - B’Aap(na2) B’ Aap(n1) L

ok(ny):—A,—A’
b|(’n1)

ok(nz)A=AA=A": ok(n2)ABAB’: ok(ni)A-BA=B’:
bl(n3) b|(n2) b|(’rL1)

For brevity, we omit all defaults of for%.

First, suppose there is an extension withnd—B. Clearly,% and% contribute
to such an extension. HavingB denies the derivation afp(n;). Also, we do not get
bl(ny) since we can neither deriveB’ nor is = A consistent. Therefore, we do not
obtainok(ns); thus,—ok(nsy) is consistent and we obtaih which destroys the putative

extension at hand.

Next, consider a candidate extension wihand B. In this case,% and %
apply. Givenok(n,) and A, we may deriveB’ A ap(n;). This givesok(ns) and then
ok(nz) A BAB’, from which we gebl(n,). Finally, we deriveok(ng) andA’ Aap(ns).
Unlike the above, we cannot deriveand we obtain an extension containidgand B.

For another example, consider the theory obtained from example (3):

: B i A :A :B
A -A A B
ok(n1):=B,~B’ ok(nz):—-A,~A’ ok(ng): A,A’ ok(n4): B,B’ : JzEN. —ok(z)
A’ Nap(n1) —A’Nap(n2) A’ Aap(n3) B’ Aap(n3) 1L
ok(n1)ABAB': ok(n2)ANAAA’: ok(n3)A—=AA=A": ok(ns)A=BA-B’:
bl(n1) bl(n2) bl(ns) bl(ns)
ANB :
ko(n1)

While this theory has two regular extensions, it has no prioritized extension under the
ordering imposed in (3). Suppose there is a prioritized extension containargl B.
This yieldsko(n1) and then (9) givesk(nz). Having A excludesd2)S. Moreover, we
cannot applydz);, sinceA’ is not derivable (by higher-ranked rules). We thus cannot
deriveok(ns), which leads to a destruction of the current extension thraigh

The next theorem gives the major result of our paper.

Theorem 1. Let A = (D, W, <) be a prioritized default theory ovef and F a set of
formulas over_.

E is a prioritized extension o\ iff £ = F'n £ and F' is a (regular) extension of
Tpe(A).

In what follows, we elaborate upon the structure of the encoded default theories:

Theorem 2. Let A = (D, W, <) be a prioritized default theory ove and letE° be
a regular extension df gz (A) = (D°, W°). Then, we have the following results:

. E° N Lis a (regular) extension fD, W);

(E°NnLY =E°nNL (orp e E°iff ¢’ € E°fore € L),

. 0 € DNGD(D°, E°) iff 62 € GD(D°, E°);

. 6 € D\ GD(D°, E°) iff 6 € GD(D°,E°) or 63, € GD(D°, E°);
if oy, € GD(D®, E°), thend; € GD(D°, E°).

aAwN P

The last property shows that eliminated rules are eventually found to be inapplicable.
This illustrates another choice of our translation: instead of using the second group of
rules in (5), we could have used

ok(n)Aa: 3,8 ,—ko(n) ok(n):—-a,~a’,—~ko(n) ok(n)A=BA=B":—ko(n) L a:f
{ ' Nap(n) ’ bl(n) ’ bl(n) n: ¥ € D} :

Although this renders the derivation &f(n), bl(n), andko(n) mutually exclusive, the
additional justification-ko(n) is not needed. Thatis, it is sufficient to rema¥e’ from
the preference handling process; the rule is found to be blocked anyway.

The following theorem summarizes some technical properties of our translation:

Theorem 3. Let E be a consistent extension Dz (A) for prioritized default theory
A= (D,W, <). We have for alb, &’ € D that

1. ns <ng € Eiff =(ns < ng') € E;
2. Ok(ng) SN
3. ap(ng) € Eiff bl(ns) &€ E.

The two last results reveal an alternative choiceffornamely- 22N ~2p(r)ATbI(z)

One may wonder how our translation avoids the explicit use of total extensions of
the given partial order. The next theorem shows that these total extensions are reflected
by the grounded enumerations of the second group of rules in (5):

Theorem 4. Given the same prerequisites as in Theorem 2,(8Y;.; be some
grounded enumeration @D (D°, E°). For all §;,8, € DE°NE, defined; < 4, iff

ko < k1 wherek; = min{i € I | 67 = (6;)3 forz € {a,b1,b2}} for k = 1,2. Then,
< is atotal ordering onD”° "% such that« C (< N (DE°NE x DE"NLY),

That is, wheneven\ = AF according to Definition 7, we have that is a total ordering
on D such thatc C<.

Finally, one may ask why we do not need to account for the “inherited” ordering
in Condition 2 of Definition 8. In fact, this is taken care of through the “tegs(’ns)
in the consequents of rulg§ that guarantee an isomorphism betwderand D in
Definition 8. More generally, such a “tagging of consequents” provides an effective
correspondence between the applicability of default rules and the presence of their con-
sequents in an extension at hand. As a side effect, this facilitates the notion of activeness
in Section 4 by rendering Condition (iii) unnecessary.

6 Compiling Prioritized Answer Sets

In this section, we describe how Brewka and Eiter’s preference approach [3] for ex-
tended logic programs can be encoded within standard answer set semantics, following
the methodology developed in [8]. We commence with a recapitulation of the necessary
concepts.

As usual, diteral, L, is an expression of the formor —p, wherep is an atom. The
set of all literals is denoted b¥it. A rule, r, is an expression of the form

Lo «— Ly,...,Ly,not Lipy1,...,n0t Ly, (20)

wheren > m > 0, and eachL; (0 < ¢ < n) is a literal. The symbol #iot” de-
notesnegation as failureor weak negationAccordingly, the classical negation sign
“—"is in this context also said to represestitong negationThe literal L is called the
headof r, and the se{L,, ..., L,,, not Ly41,...,not L,} is thebodyof r. We use
head(r) to denote the head of ruke and body(r) to denote the body of. Further-
more, letbody™t (r) = {L1,..., L} andbody™ (r) = {Lmy1, ..., L, }. The elements
of body™ (r) are referred to as thprerequisitesof r. If body™ (r) = 0, thenr is a
prerequisite-free rulgif body(r) = 0, thenr is afact; if » contains no variables, then
is ground We say that a rule is defeateddy a set of literalsX iff body ™ (r) N X # 0.
As well, each literal inbody ™ (r) N X is said todefeatr. We definenot X as the set
{not L | L € X}.

A set of literalsX is consisteniff it does not contain a complementary pair—p
of literals. We say thak is logically closediff it is either consistent or equalsit.

A rule baseis any collection of rules; anektendedl logic program or simply a
program is a finite rule base. A rule base (programpisrequisite-fredground if all
rules in it are prerequisite-free (ground).

For a rule basé, we denote byR* the ground instantiation af over the Herbrand
universe of the languagé of R.
The answer set semantics interprets ground rules of the form (10) as defaults

LiN...ANLy, : 2Lpy1,..., Ly,

o (11)

A set X of ground literals is called aanswer sebf the ground progran® iff X is of

the formE N Lit, whereFE is an extension of the default theory obtained by identifying
each ruler € P as a default of the form (11). Answer sets of programs not necessarily
ground are obtained by taking the answer sets of the ground instantiaitioh P.

A prioritized logic programis a pairll = (P, <), whereP is a logic program and
< is a strict partial order. Following [3], the ground instantiation of a prioritized logic
program(P, <) is obtained as follows: LeP* be the ground instantiation d? and
definer* <* s* for r*, s* € P* providingr*, s* are instances of, s € P, respectively,
such that: < s. If <* is a strict partial order, then the p&iP*, <*) defines the ground
instantiation of(P, <); otherwise, the ground instantiation @P, <) is undefined. In
the sequel, we will be concerned with ground prioritized programs only.

A fully prioritized logic programis a prioritized logic prograntP, <) where <
is a total ordering. Prioritized answer sets of prioritized logic programs are defined
similarly to prioritized extensions of prioritized default theories. That is to say, first the
prerequisite-free case is treated, and afterwards the general case is addressed in terms
of the prerequisite-free case.

For fully prioritized ground programs, Definitions 5 and 7 boil down to the fol-
lowing operator: Letll = (P, <) be a fully prioritized ground prerequisite-free logic
program,(r;);c; be an enumeration of the orderirg andX be a set of literals. Then,
Cn(X) is the smallest logically closed set of literals containling. ; X;, where

Uj<i Xi if r; is defeated by J, _, E, or
X; = head(r;) € X andr; is defeated byX;

U;<; Xj U {head(r;)} otherwise.

As in the default logic case, this construction is unique in the sense that for a fully
prioritized prerequisite-free ground progrdi there is at most one answer séof P
such thatC;; (X) = X (cf. [3, Lemma 4.1]). Accordingly, this set is referred to as the
prioritized answer setf 1, if it exists. Prioritized answer sets of an arbitrary (i.e., not
necessarily prerequisite-free) ground fully prioritized progtem= (P, <) are given
by setsX of ground literals which are prioritized answer sets of the prioritized program
ITx = (Px,<x), Where<x is constructed just as the orderirg; of Definition 8,
and Py results fromP by (i) deleting any rule: € P such thatody ™ (r) € X, and (ii)
removing any prerequisites in the body of the remaining rules. Lastlg,a prioritized
answer set of a ground prioritized logic progréam <) iff (i) X is a (regular) answer
set of P and (ii) X is a prioritized answer set of some fully prioritized progréf) <’)
such thaicC<’.

This concludes the review of prioritized answer sets according to [3]; we continue
with a compilation of this approach in standard answer set semantics.

As in Section 5, given a ground prioritized progrdfrover language, we assume
a disjoint language’ containing literalsl’ for eachL in L. Likewise, ruler’ results
from r by replacing each literal in r by L’. We maintain for rules the same naming
convention as for defaults, i.e., the termnserves as name for rule similarly writing
n : r as before. As well, the languad® extendsC U £’ by new ground atomén, <
ns), ok(n,.), ko(n,), ry(n,, ns), bl(n,), andap(n,), for eachr, s in II.

Definition 11. LetII = (P, <) be a prioritized ground logic program ove} such that
P ={ry,...,rx}. Then, the logic prograrﬁépE(H) over L° is given by

PU UTGPT(T) U {(nl = n2) <_| (7‘1,7“2) € <}7

where 7(r) consists of the following collection of rules, fdr € body™ (r), K €
body~ (r), ands € P:

1 « not ok(n,)
ko(n,) « head(r), K

ay(r): head(r') «— ap(n,)
as(r) . ap(n.) < ok(n.), body(r), not body™ (1)
bi(r,L): bl(n.) < ok(n.),not L,not L'
bo(r, K) : bl(n,) « ok(n,), K, K’
ci(r) ok(ny) < ry(ny, iy,), s vy (n, 1y,)
ca(r,s): ry(nr, ng) < not (n, < ns)
c3(rys) s ry(ng, ng) «— (n. < ng),ap(ns)
04(7‘, S) (nr,ns) (nr = ns)vbl(ns)
cs(r, 8) : ry(ng, ng) < ko(ng)
)
)

The first group of rules im(r) expresses applicability and blocking conditions:of
and contains the counterparts of the defadftsi; , anddy, in Definition 10, respec-
tively. To wit, applicability ofr is captured by the two rules, (r) andas(r), while &
rules of the formb, (r, L) andb,(r, K) detect blockage of, wherek is the number of
literals in body(r). The second group of rules unfolds axiom (9) and relies on auxil-
iary atomsry(-, -) (“ready”), taking care of instantiating the quantification over names
expressed in (9). Finally, rule&r) ande(r, K) correspond t@y, , ands$, respectively.

We obtain the following result corresponding to Theorem 1:

Theorem 5. Let IT = (P, <) be a prioritized ground logic program ovef and X a
set of literals over’.

X is a prioritized answer set dff iff X =Y N £ andY is a(regular) answer set
of T,%,(IT).

Additionally, given suitable concepts for the present case, analogous results to Theo-
rems 2, 3, and 4 can be shown. We just note the counterpart of Theorem 3:

Theorem 6. Let X be a consistent answer sel’IﬁPE) for prioritized logic program
IT = (P, <). We have for alf € P that

1. ok(ns) € X;

2. ap(ns) € X iff bl(ns) & X.

The approach is implemented in Prolog and serves as a front-end to the logic pro-
gramming systemdlv [9] andsmodels [13]. Our current prototype, calleplp, is
available atttp://www.cs.uni-potsdam.de/ torsten/plp/ . This URL
contains also diverse examples taken from the literature. The implementation differs
from the approach described here, in that the translation applies to named rules only; it
thus leaves unnamed rules unaffected.

For illustration, consider the logic programming counterpart of Example (4) in the
syntax ofplp :

b :- name(l), not -b, a.
-b :- name(2), not b. 2<1.
a :- name(3), not -a. 3<2.
We use -’ (or ‘neg’) for classical negation anchbt ' (or ‘™) for negation as
failure. Furthermorepame(-) is used to identify rule names; and natural numbers
serve as names. Note that our implementation handles transitivity implicitly, so that
there is no need to speci8k1.
This is then translated into the following (intermediate) standard program:

(2) b :- not neg b, a.

2) bl :- ap(1).

3) ap(1) :- name(1), ok(1), not neg b, not neg bl, a.
(4) bl(1) :- ok(1), neg b, neg bl.

(5) bl(1) :- ok(1), not a, not al.

(6) ko(1) :- b, neg b.

@) neg b :- not b.

(8) neg bl :- ap(2).

9) ap(2) :- name(2), ok(2), not b, not bl.

(10) bl(2) :- ok(2), b, bl.

(11) ko(2) :- neg b, b.

(12) a :- not neg a.

(13) al :- ap(3).

(14) ap(3) :- name(3), ok(3), not neg a, not neg al.
(15) bl(3) :- ok(3), neg a, neg al.

(16) ko(3) :- a, neg a.

(17) 2 < 1.

(18) 3 < 2.

(29) neg M < N :- name(N), name(M), N < M.

(20) N < M :- name(N), name(M), name(O), N < O, O < M.
(21) ok(N) :- name(N), ry(N, 1), ry(N, 2), ry(N, 3).
(22) ry(N, M) :- name(N), name(M), not N < M.
(23) ry(N, M) :- name(N), name(M), N < M, ap(M).
(24) ry(N, M) :- name(N), name(M), N < M, bl(M).
(25) ry(N, M) :- name(N), name(M), ko(M).

(26) false :- name(N), not ok(N).

The original rules, vizry, ro, andrsz, are given by(1),(7), and(12) . The addi-
tional encoding of, e.g., rulgl) is given by(2) to (6) . We append the symbol®

for priming here, e.gh1 is the primed version df. In detail,(2) and(3) correspond
toa;(r1) andag(ry), (4) and(5) correspond tdy(rq, B) andb; (r1, A), and finally
(6) corresponds te(ri, B). Rules(19) and(20) are additional rules enforcing a
strict partial order. Rule§21) to (25) account fores(r) to c5(r, s). Lastly, (26)
implementsi(r).

The above program is then refined once more in order to account for some special
features ofdlv andsmodels , like implementation of classical negationeg’ and
‘false . Also, an extensional database for rule names is provided.

Calling one of these provers with the respective input corresponding to the above
program, we obtain the desired prioritized answer set containing the litérafsl B
(i.e., represented by andb).

7 Conclusion

We have shown how the approach of Brewka and Eiter, both with respect to extended
logic programs [3] and to default logic [4], can be expressed in our general framework
for preferences [6, 8]. On the one hand, this illustrates the generality of our framework;
on the other hand, it sheds light on Brewka and Eiter's approaches, since it provides a
translation and encoding of their approaches into extended logic programs and default
logic, respectively. As well, our encoding allows a straightforward implementation of
[3] via a translation into extended logic programs.

Lastly, we note that our approach described in [8] ubgtamicpreference informa-
tion, in that preferences were expressed within a logic program. As well, in the case of
default logic, [6] also describes the incorporation of dynamic preferences. Thus in these
approaches, preferences can be encoded as holding only in specific contexts, holding
by default, and so on. Such a dynamic setting was also sketched in [4]. It is a straight-
forward matter to extend Definitions 10 and 11 to handle this dynamic case as well.

Acknowledgement3he first author was partially supported by a Research Grant from
the Natural Sciences and Engineering Research Council of Canada. The second au-
thor was partially supported by the German Science Foundation (DFG) under grant
FOR 375/1-1, TP C. The third author was partially supported by the Austrian Science
Fund (FWF) under grants N Z29-INF and P13871-INF.

References

[1] F. Baader and B. Hollunder. How to prefer more specific defaults in terminological default
logic. In Proceedings of the International Joint Conference on Atrtificial Intelligepeges
669-674, 1993.

[2] G.Brewka. Reasoning about priorities in default logicPhoceedings of the AAAI National
Conference on Artificial Intelligenc&olume 2, pages 940-945. The AAAI Press/The MIT
Press, 1994.

[3] G. Brewka and T. Eiter. Preferred answer sets for extended logic progrémisgicial
Intelligence 109(1-2):297-356, 1999.

[4]

(5]

(6]

(7]

(8]

9]

(10]

(11]

(12]

(13]

(14]

(15]

G. Brewka and T. Eiter. Prioritizing default logic. In StoHdobler, editor|ntellectics and
Computational Logic — Papers in Honour of Wolfgang BitkdLuwer Academic Publish-

ers, 2000. To appear.

P. Cholewnski, V. Marek, and M. TruszcZyski. Default reasoning system DeReS. In
Proceedings of the Fifth International Conference on the Principles of Knowledge Repre-
sentation and Reasoningages 518-528. Morgan Kaufmann Publishers, 1996.

J. Delgrande and T. Schaub. Compiling reasoning with and about preferences into default
logic. In M. Pollack, editorProceedings of the International Joint Conference on Atrtificial
Intelligence pages 168-174. Morgan Kaufmann Publishers, 1997.

J. Delgrande, T. Schaub, and H. Tompits. A compiler for ordered logic programs. In
C. Baral and M. TruszcZski, editors Proceedings of the Eighth International Workshop
on Non-Monotonic ReasoningrXiv.org e-Print archive, 2000. System Abstract.

J. Delgrande, T. Schaub, and H. Tompits. Logic programs with compiled preferences. In
C. Baral and M. TruszcZski, editors Proceedings of the Eighth International Workshop
on Non-Monotonic ReasoningrXiv.org e-Print archive, 2000.

T. Eiter, N. Leone, C. Mateis, G. Pfeifer, and F. Scarcello. A deductive system for non-
monotonic reasoning. In J. Dix, U. Furbach, and A. Nerode, ediRnsceedings of the
Fourth International Conference on Logic Programming and Non-Monotonic Reasoning
volume 1265 ofLecture Notes in Atrtificial Intelligencepages 363—-374. Springer Verlag,
1997.

M. Gelfond and V. Lifschitz. Classical negation in logic programs and deductive databases.
New Generation Computing:365-385, 1991.

T. Janhunen. Classifying semi-normal default logic on the basis of its expressive power.
In M. Gelfond, N. Leone, and G. Pfeifer, editoRroceedings of the Fifth International
Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR@8)me

1730 ofLecture Notes in Artificial Intelligencgages 19-33. Springer Verlag, 1999.

J. McCarthy. Applications of circumscription to formalizing common-sense knowledge.
Artificial Intelligence 28:89-116, 1986.

I. Niemek and P. Simons. Smodels: An implementation of the stable model and well-
founded semantics for normal logic programs. In J. Dix, U. Furbach, and A. Nerode, ed-
itors, Proceedings of the Fourth International Conference on Logic Programing and Non-
monotonic Reasoningages 420-429. Springer, 1997.

D. Poole. A logical framework for default reasonindrtificial Intelligence 36:27—-47,
1988.

R. Reiter. A logic for default reasoningrtificial Intelligence 13(1-2):81-132, 1980.

