
A Compilation of Brewka and Eiter’s Approach to
Prioritization

James P. Delgrande1, Torsten Schaub2?, and Hans Tompits3

1 School of Computing Science, Simon Fraser University,
Burnaby, B.C., Canada V5A 1S6,jim@cs.sfu.ca

2 Institut für Informatik, Universiẗat Potsdam,
Postfach 601553, D–14415 Potsdam, Germany,torsten@cs.uni-potsdam.de

3 Institut für Informationssysteme 184/3, Technische Universität Wien,
Favoritenstraße 9–11, A–1040 Wien, Austria,tompits@kr.tuwien.ac.at

Abstract. In previous work, we developed a framework for expressing general
preference information in default logic and logic programming. Here we show
that the approach of Brewka and Eiter can be captured within this framework.
Hence, the present results demonstrate that our framework is general enough
to capture other independently-developed methodologies. As well, since the ex-
tended logic program framework has been implemented, we provide an imple-
mentation of the Brewka and Eiter approach via an encoding of their approach.

1 Introduction

In previous work [6], we presented a general framework based on default logic for
expressing general preference information. There, we addressed the problem of repre-
senting preferences among individual and aggregated properties in default logic. In this
approach, one begins with an ordered default theory, in which preferences are specified
on default rules. This is transformed into a second, standard, default theory in which
the preferences are respected, in the sense that the obtained default extensions contain
just those conclusions that accord with the order expressed by the original preference
information. The approach is fully general: One may specify preferences that hold by
default, or give preferences among preferences, or give preferences among sets of de-
faults.

We adapted this approach in [8] for logic programming under the answer set se-
mantics [10]. While the original approach is usable for full-fledged theorem provers for
default logic, likeDeReS[5], this subsequent approach applies to logic programming
systems, such asdlv [9] or smodels [13]. In fact, we have provided an implemen-
tation of the approach in extended logic programs, serving as a front-end fordlv and
smodels (see [7] for details).

In the context of default logic, our methodology involves the appropriate “decom-
position” of default rules, so that one can detect the applicability conditions of default
rules and control their actual application. In our framework, this is carried outwithin
a default theory. This is accomplished, first, by associating a unique name with each

? Affiliated with the School of Computing Science at Simon Fraser University, Canada.

default rule, so that it can be referred to within a theory. Second, special-purpose pred-
icates are introduced for detecting conditions in a default rule, and for controlling rule
invocation. This in turn allows a fine-grained control over what default rules are applied
and in what cases. By means of these named rules and special-purpose predicates, one
can formalise various phenomena of interest.

Given an ordered default theory(D,W,<), where< is a strict partial order onD,
the intuition is that one applies the<-maximal default(s), if possible, then the next<-
greatest, and so on. Thus we adopt aprescriptiveinterpretation of the ordering, in that<
prescribes the order in which rules are applied. This can be contrasted with adescriptive
interpretation, in which the preference order represents a ranking on desired outcomes:
the desirable (or: preferred) situation is one where the most preferred default(s) are
applied.

The approach of Brewka and Eiter [3], first developed with respect to extended logic
programs and subsequently generalized for default logic in [4], arguably fits the “de-
scriptive” interpretation. In common with previous work, Brewka and Eiter begin with
a partial order on a rule base, but define preference with respect to total orders that con-
form to the original partial order. As well, answer sets or extensions, respectively, are
first generated and the “prioritized” answer sets (extensions) are selected subsequently.
In contrast, in our approach, we deal only with the original partial order, which is trans-
lated into the object theory. As well, only “preferred” extensions are produced in our
approach; there is no need for meta-level filtering of extensions.

However, we show here that the approach of Brewka and Eiter is expressible in our
framework. Consequently, this serves to show the scope and generality of our frame-
work. As well, this result enables a straightforward implementation of the Brewka and
Eiter approach.

In the next subsection we briefly introduce default logic, while Sections 3 and 4
introduce our approach and Brewka and Eiter’s, respectively. Section 5 describes the
translation of their approach expressed in default logic, while Section 6 does the same
for the case of extended logic programs. Section 7 gives brief concluding remarks.

2 Background

Default logic [15] augments classical logic bydefault rulesof the form

α : β1, . . . , βn
γ

whereα, β1, . . . , βn, γ are sentences of first-order or propositional logic. Here we
mainly deal withsingular defaults for whichn = 1. A singular rule isnormal if β is
equivalent toγ; it is semi-normalif β impliesγ. [11] shows that any default rule can be
transformed into a set of semi-normal defaults. We sometimes denote theprerequisite
α of a defaultδ by Prereq(δ), its justificationβ by Justif(δ), and itsconsequentγ by
Conseq(δ). Accordingly, Prereq(D) is the set of prerequisites of all default rules in
D; Justif(D) andConseq(D) are defined analogously. Empty components, such as no
prerequisite or even no justifications, are assumed to be tautological (we speak in such
cases ofprerequisite-freeand justification-freedefaults, respectively).Open defaults

with unbound variables are taken to stand for all corresponding instances. A set of
default rulesD and a set of sentencesW form adefault theory(D,W) that may induce
a single, multiple, or even zeroextensionsin the following way:

Definition 1. Let (D,W) be a default theory and letE be a set of sentences. Define
E0 = W and fori ≥ 0:

GDi =
{
α : β1,...,βn

γ ∈ D
∣∣∣α ∈ Ei,¬β1 6∈ E, . . . ,¬βn 6∈ E

}
;

Ei+1 = Th(Ei) ∪ {Conseq(δ) | δ ∈ GDi}.

Then,E is an extension for(D,W) iff E =
⋃∞
i=0Ei.

(Th(E) refers to the logical closure of setE of sentences.) Any such extension rep-
resents a possible set of beliefs about the world at hand. The above procedure is not
constructive sinceE appears in the specification ofGDi. We defineGD(D,E) =⋃∞
i=0GDi as the set ofgenerating defaultsof extensionE. An enumeration〈δi〉i∈I

of default rules isgroundedin a set of sentencesW , if we have for everyi ∈ I that
W ∪ Conseq({δ0, . . . , δi−1}) ` Prereq(δi).

For simplicity, we restrict our attention in what follows to finite, singular default
theories, consisting of finite sets of default rules and sentences.

3 Preference-Handling in Standard Default Logic

For adding preferences among default rules, a default theory is usually extended with
an ordering on the set of default rules. In accord with [4], we define:

Definition 2. A prioritized default theory is a triple(D,W,<) where(D,W) is a de-
fault theory and< is a strict partial order onD.

In contrast to [4], however, we use the ordering< in the sense of “higher priority”, i.e.,
δ < δ′ expresses thatδ′ has “higher priority” thanδ.

The methodology of [6] provides a translation,T , that takes such a prioritized the-
ory (D,W,<) and translates it into a regular default theoryT ((D,W,<)) = (D′,W ′)
such that the explicit preferences in< are “compiled” intoD′ andW ′ and such that the
extensions of(D′,W ′) correspond to the “preferred” extensions of(D,W,<). More-
over, the approach admits not only “static” preferences as discussed here—where the
ordering of the defaults is specified at the meta-level—but also “dynamic” preferences
within the object language.

In [6], to begin with, a unique name is associated with each default rule. This is
done by extending the original language by a set of constants1 N such that there is a
bijective mappingn : D → N . We writenδ instead ofn(δ) (and abbreviatenδi byni to
ease notation). Also, for default ruleδ with namen, we sometimes writen : δ to render
naming explicit. To encode the fact that we deal with a finite set of distinct default

1 McCarthy effectively first suggested the naming of defaults using a set ofaspectfunctions [12];
Theorist [14] uses atomic propositions to name defaults.

rules, we adopt a unique names assumption (UNAN) and domain closure assumption
(DCAN) with respect toN . That is, for a name setN = {n1, . . . , nm}, we add axioms

UNAN : (ni 6= nj) for all ni, nj ∈ N with i 6= j;
DCAN : ∀x. name(x) ≡ (x = n1 ∨ · · · ∨ x = nm).

For convenience, we write∀x ∈ N. P (x) instead of∀x. name(x) ⊃ P (x).
Given δi < δj , we want to ensure that, beforeδi is applied,δj can be applied or

found to be inapplicable.
More formally, we wish to exclude the case whereδi ∈ GDn but δj 6∈ GDn al-

thoughδj ∈ GDm for somem > n in Definition 1. For this purpose, we need to be
able to (i) detect when a rule has been applied or when a rule is blocked, and (ii) control
the application of a rule based on other antecedent conditions. For a default ruleα : β

γ
there are two cases for it to not be applied: it may be that the antecedent is not known to
be true (and so its negation is consistent), or it may be that the justification is not con-
sistent (and so its negation is known to be true). For detecting this case, we introduce a
new, special-purpose predicatebl(·). Similarly we introduce a predicateap(·) to detect
when a rule has been applied. To control application of a rule we introduce predicate
ok(·). Then, a default ruleδ = α : β

γ is mapped to

α ∧ ok(nδ) : β
γ ∧ ap(nδ)

,
ok(nδ) : ¬α

bl(nδ)
,
¬β ∧ ok(nδ) :

bl(nδ)
. (1)

These rules are sometimes abbreviated byδa, δb1 , δb2 , respectively. Whileδa is more or
less the image of the original ruleδ, rulesδb1 andδb2 capture the non-applicability of
the rule.

None of the three rules in the translation can be applied unlessok(nδ) is true. Since
ok(·) is a new predicate symbol, it can be expressly made true in order to potentially
enable the application of the three rules in the image of the translation. Ifok(nδ) is true,
the first rule of the translation may potentially be applied. If a rule has been applied,
then this is indicated by assertingap(nδ). The last two rules give conditions under
which the original rule is inapplicable: either the negation of the original antecedentα
is consistent (with the extension) or the justificationβ is known to be false; in either
such casebl(nδ) is concluded.

We can assert that defaultnj : αj : βj
γj

is preferred toni : αi : βi
γi

in the object lan-
guage by introducing a new predicate,≺, and then asserting thatni ≺ nj . However,
this translation so far does nothing to control the order of rule application. Nonetheless,
for δi < δj we can now control the order of rule application: we can assert that ifδj
has been applied (and soap(nj) is true), or known to be inapplicable (and sobl(nj) is
true), then it isok to applyδi. The idea is thus todelay the consideration of less pre-
ferred rules until the applicability question has been settled for the higher ranked rules.
Formally, this is realized by adding the axiom

∀x ∈ N.
[
∀y ∈ N. (x ≺ y) ⊃ (bl(y) ∨ ap(y))

]
⊃ ok(x) (2)

to the translation.

To summarize, letT ((D,W,<)) = (D̃, W̃) be the translation obtained in this way,
for a given prioritized default theory(D,W,<). Then, the prioritized extensions of
(D,W,<) are determined by the (regular) extensions of(D̃, W̃), modulo the original
language.

It is important to note that this translation schema is just one possible preference
strategy. Changes to the conditions when a default is considered to be applicable (real-
ized by the specific form of the decomposed defaultsδa, δb1 , δb2 and axiom (2)) result
in different preference strategies. Also, further rules and special-purpose predicates can
be added, if needed. For instance, in Sections 5 and 6 we rely on an additional predicate
ko(·) that aims at eliminating rules from the reasoning process.

4 Brewka and Eiter’s Approach to Preference

We now describe the approach to dealing with a prioritized default theory introduced
in [4]. First, partially ordered default theories are reduced to totally ordered ones.2

Definition 3. A fully prioritized default theory is a prioritized default theory(D,W,<)
where< is a total ordering.

The general case of arbitrary prioritized default theories is reduced to this restricted
case as follows.

Definition 4. Let (D,W,<) be a prioritized default theory. Then,E is a prioritized
extension of(D,W,<) iff E is a prioritized extension of some fully prioritized default
theory(D,W,<′) such that<⊆<′.

Conclusions of prioritized default theories are defined in terms of prioritized exten-
sions, which are a subset of the regular extensions of a default theory, i.e., the extensions
of (D,W) according to [15].

The construction of prioritized extensions relies on the notion ofactiveness[1, 2].
A defaultδ is active in a set of formulasS, if (i) Prereq(δ) ∈ S, (ii) ¬Justif(δ) 6∈ S,
and (iii) Conseq(δ) 6∈ S hold. Intuitively, a default is active inS if it is applicable with
respect toS but has not yet been applied.

Definition 5. Let∆ = (D,W,<) be a fully prioritized prerequisite-free default theory.
The operatorC is defined as follows:C(∆) =

⋃
i≥0Ei, whereE0 = Th(W), and for

everyi > 0,

Ei =


⋃
j<iEj if no default fromD is active in

⋃
j<iEj ;

Th(
⋃
j<iEj ∪ {Conseq(δ)}) otherwise, whereδ ∈ D is the maximal

default(w.r.t.<) active in
⋃
j<iEj .

In the case of prerequisite-free, normal default theories, the operatorC always produces
an extension in the sense of [15] and thus can directly be used to define prioritized
extensions:

2 In fact, [4] deal with so-calledwell-orderings, which are generalised total orderings, needed
for treating infinite domains.

Definition 6. Let∆ = (D,W,<) be a fully prioritized prerequisite-free, normal de-
fault theory. Then,E is the prioritized extension of∆ iff E = C(∆).

The next definition addresses the more general class of prerequisite-free theories:

Definition 7. Let∆ = (D,W,<) be a fully prioritized prerequisite-free default theory.
Then, a setE of formulas is a prioritized extension of∆ iff E = C(∆E), where∆E =
(DE ,W,<) andDE = D \ {δ ∈ D | Conseq(δ) ∈ E and¬Justif(δ) ∈ E}.

That is,∆E is obtained from∆ by deleting all defaults whose consequents are inE
and which are defeated inE. Clearly, this leaves normal rules unaffected. The purpose
of this filter is illustrated in [4] by the following default theory:

∆3 =
({
n1 : :¬B

A , n2 : :¬A
¬A , n3 : :A

A , n4 : :B
B

}
, ∅, {δj < δi | i < j}

)
. (3)

This theory has two regular extensions,Th({A,B}) andTh({¬A,B}). Applying op-
eratorC to∆3 yields the first extension. However, it is argued in [4] that this extension
does not preserve priorities because defaultδ2 is defeated inE by applying a default
which is less preferred thanδ2, namely defaultδ3. This extension is ruled out by the fil-
ter in Definition 7 becauseTh({A,B}) 6= Th({¬A,B}) = C(∆Th({A,B})

3). Theory
∆3 has therefore no prioritized extension.

The next definition accounts for the general case by reducing it to the prerequisite-
free one. For checking whether a given regular extensionE is prioritized, Brewka and
Eiter evaluate the prerequisites of the default rules according to the extensionE. To this
end, for a defaultδ, defineδ> as the prerequisite-free version ofδ, i.e.,δ> results from
δ by replacingPrereq(δ) by>.

Definition 8. Let∆ = (D,W,<) be a fully prioritized default theory andE a set of
formulas. The default theory∆E = (DE ,W,<E) is obtained from∆ as follows:

1. DE = {δ> | δ ∈ D and Prereq(δ) ∈ E};
2. for anyζ1, ζ2 ∈ DE , ζ1 <E ζ2 iff δ1 < δ2 whereδi = max<{δ ∈ D | δ> = ζi}.

In other words,DE is obtained fromD by (i) eliminating every defaultδ ∈ D such that
Prereq(δ) 6∈ E, and (ii) replacingPrereq(δ) by> in all remaining defaultsδ.

Definition 9. Let∆ = (D,W,<) be a fully prioritized default theory. Then,E is a pri-
oritized extension of∆, if (i) E is a classical extension of∆, and(ii) E is a prioritized
extension of∆E .

That is, (ii) is equivalent toE = C((∆E)E).
For illustration, consider [4, Example 4]:

: A
A < :¬B

¬B < A : B
B , (4)

and whereW = ∅. This theory,∆, has two regular extensions:E1 = Th({A,B})
andE2 = Th({A,¬B}). ∆E1 amounts to : A

A < :¬B
¬B < : B

B . Clearly,(∆E1)E1 =
∆E1 . Also, we obtain thatC(∆E1) = E1, that is,E1 is a prioritized extension. In
contrast to this,E2 is not prioritized. While∆E2 = ∆E1 and(∆E2)E2 = ∆E1 , we get
C((∆E2)E2) = E1 6= E2. That is,C((∆E2)E2) reproducesE1 rather thanE2.

This example reveals the difference between the prescriptive methodology of [6]
discussed in the previous section, and Brewka and Eiter’s descriptive approach dis-
cussed here, insofar as the former method actually selectsno prioritized extension. In-
tuitively, this can be explained by the observation that for the highest-ranked default
A : B

B , neither applicability nor blockage can be asserted: Either of these properties relies
on the applicability of lesser-ranked defaults, effectively resulting in a circular situation
destroying any possible extension. Nonetheless, as we show next, the methodology of
[6] is general enough to admit a suitable preference strategy enforcing the simulation
of prioritized extensions in the sense of Definition 9.

5 Prioritized Extensions via Standard Default Logic

Given an alphabetP of some languageLP , we define a disjoint alphabetP ′ asP ′ =
{p′ | p ∈ P} (so implicitly there is an isomorphism betweenP andP ′). Then, for
α ∈ LP , we defineα′ ∈ LP′ as the result of replacing inα each propositionp from
P by the corresponding propositionp′ in P ′. This is defined analogously for sets of
formulas, default rules and sets of default rules. We abbreviateLP andLP′ by L and
L′, respectively.

We obtain the following translation mapping prioritized default theories in some
languageL onto standard default theories in the languageL◦ obtained by extending
L ∪ L′ by new predicates symbols(· ≺ ·), ok(·), ko(·), bl(·), andap(·), and a set of
associated default names:

Definition 10. Given a prioritized default theory∆ = (D,W,<) overL and its set of
default namesN = {nδ | δ ∈ D}, defineTBE(∆) = (D◦,W ◦) overL◦ by:

D◦ = D ∪
{

ok(nδ)∧α : β,β′

γ′∧ap(nδ)
, ok(nδ) :¬α,¬α′

bl(nδ)
, ok(nδ)∧¬β∧¬β′ :

bl(nδ)

∣∣∣ δ = α : β
γ ∈ D

}
(5)

∪
{

:¬(x≺y)
¬(x≺y)

}
∪
{
γ∧¬β :
ko(nδ)

∣∣∣ δ = α : β
γ ∈ D

}
∪
{

: ∃x∈N.¬ok(x)
⊥

}
(6)

W ◦ = W ∪ W ′ (7)

∪ {n1 ≺ n2 | (δ1, δ2) ∈ <} ∪ {DCAN ,UNAN} (8)

∪ {∀x ∈ N.
[
∀y ∈ N. ko(y) ∨ [(x ≺ y) ⊃ (bl(y) ∨ ap(y))]

]
⊃ ok(x)} (9)

We denote the second group of rules in (5) byδ◦a, δ◦b1 , andδ◦b2 ; those in (6) are abbrevi-
ated byδ◦≺, δ◦ko , andδ◦⊥, respectively.

It is important to note that the inclusionsD ⊆ D◦ andW ⊆ W ◦ hold. As we
show in Theorem 2, this allows us to construct regular extensions of(D,W) within
extensions of(D◦,W ◦). Such an extension can be seen as theguessin a guess-and-
check approach; it corresponds to Condition (i) in Definition 9.

The salient part of the correspondingcheck, viz. Condition (ii) in Definition 9, is
accomplished by the second group of rules in (5) and the remaining facts inW ◦. To-
gether withW ′ ⊆ W ◦, the rules of formδ◦a aim at rebuilding the guessed extension in
L′. They form the prerequisite-free counterpart of the original default theory inL′. In
fact, the prerequisite ofδ◦a refers viaα to the guessed extension inL; no formula inL′
must be derived for applyingδ◦a. This accounts for the elimination of prerequisites in

Condition (1) of Definition 8. Moreover, the elimination of rules whose prerequisites
are not derivable is accomplished by rules of formδ◦b1 . Rules of formδ◦b2 guarantee that
defaults are only defeatable by rules with higher priority. In fact, it is¬β′ that must be
derivable in such a way only.

The application of rules according to the given preference information is enforced
by axiom (9): For everyni, we deriveok(ni) whenever, for everynj , eitherko(nj) is
true, or, ifni ≺ nj holds, eitherap(nj) or bl(nj) is true. This axiom allows us to derive
ok(ni), indicating thatδi may potentially be applied, whenever we have for allδj with
δi < δj thatδj has been applied or cannot be applied, orδj has already been eliminated
from the preference handling process. This elimination of rules is in accord with Def-
inition 7 and realized byδ◦ko . The preference information in (8) is rendered complete
through rules of formδ◦≺. This completion is necessary for the formula in (9) to work
properly: whenever(δi, δj) 6∈ <, rule δ◦≺ allows us to conclude (in the extension) that
¬(ni ≺ nj) holds.

Lastly, δ◦⊥ rules out unsuccessful attempts in rebuilding the regular extension from
L within L′ according to the given preference information. In this way, we eliminate all
regular extensions that do not respect preference.

For illustration, reconsider theory (4), viz.

n3 : :A
A < n2 : :¬B

¬B < n1 : A :B
B

andW = ∅. Recall that this theory has two regular extensions: one containing{A,¬B}
and another containing{A,B}; but that only the latter is a prioritized extension accord-
ing to [3]. We get:

:A
A

:¬B
¬B

A :B
B

ok(n3) :A,A′

A′∧ap(n3)
ok(n2) :¬B,¬B′
¬B′∧ap(n2)

ok(n1)∧A :B,B′

B′∧ap(n1)
:¬ok(n1)∨¬ok(n2)∨¬ok(n3)

⊥

ok(n1) :¬A,¬A′
bl(n1)

ok(n3)∧¬A∧¬A′ :
bl(n3)

ok(n2)∧B∧B′ :
bl(n2)

ok(n1)∧¬B∧¬B′ :
bl(n1)

For brevity, we omit all defaults of form⊥ :
ko(n) .

First, suppose there is an extension withA and¬B. Clearly, :A
A and :¬B

¬B contribute
to such an extension. Having¬B denies the derivation ofap(n1). Also, we do not get
bl(n1) since we can neither derive¬B′ nor is ¬A consistent. Therefore, we do not
obtainok(n2); thus,¬ok(n2) is consistent and we obtain⊥ which destroys the putative
extension at hand.

Next, consider a candidate extension withA andB. In this case, :A
A and A :B

B
apply. Givenok(n1) andA, we may deriveB′ ∧ ap(n1). This givesok(n2) and then
ok(n2)∧B∧B′, from which we getbl(n2). Finally, we deriveok(n3) andA′∧ap(n3).
Unlike the above, we cannot derive⊥ and we obtain an extension containingA andB.

For another example, consider the theory obtained from example (3):

:¬B
A

:¬A
¬A

:A
A

:B
B

ok(n1) :¬B,¬B′
A′∧ap(n1)

ok(n2) :¬A,¬A′
¬A′∧ap(n2)

ok(n3) :A,A′

A′∧ap(n3)
ok(n4) :B,B′

B′∧ap(n3)
: ∃x∈N.¬ok(x)

⊥

ok(n1)∧B∧B′ :
bl(n1)

ok(n2)∧A∧A′ :
bl(n2)

ok(n3)∧¬A∧¬A′ :
bl(n3)

ok(n4)∧¬B∧¬B′ :
bl(n3)

A∧B :
ko(n1)

While this theory has two regular extensions, it has no prioritized extension under the
ordering imposed in (3). Suppose there is a prioritized extension containingA andB.
This yieldsko(n1) and then (9) givesok(n2). HavingA excludes(δ2)◦a. Moreover, we
cannot apply(δ2)◦b2 sinceA′ is not derivable (by higher-ranked rules). We thus cannot
deriveok(n3), which leads to a destruction of the current extension throughδ◦⊥.

The next theorem gives the major result of our paper.

Theorem 1. Let∆ = (D,W,<) be a prioritized default theory overL andE a set of
formulas overL.

E is a prioritized extension of∆ iff E = F ∩ L andF is a (regular) extension of
TBE(∆).

In what follows, we elaborate upon the structure of the encoded default theories:

Theorem 2. Let∆ = (D,W,<) be a prioritized default theory overL and letE◦ be
a regular extension ofTBE(∆) = (D◦,W ◦). Then, we have the following results:

1. E◦ ∩ L is a (regular) extension of(D,W);
2. (E◦ ∩ L)′ = E◦ ∩ L′ (or ϕ ∈ E◦ iff ϕ′ ∈ E◦ for ϕ ∈ L);
3. δ ∈ D ∩GD(D◦, E◦) iff δ◦a ∈ GD(D◦, E◦);
4. δ ∈ D \GD(D◦, E◦) iff δ◦b1 ∈ GD(D◦, E◦) or δ◦b2 ∈ GD(D◦, E◦);
5. if δ◦ko ∈ GD(D◦, E◦), thenδ◦b2 ∈ GD(D◦, E◦).

The last property shows that eliminated rules are eventually found to be inapplicable.
This illustrates another choice of our translation: instead of using the second group of
rules in (5), we could have used{

ok(n)∧α : β,β′,¬ko(n)
γ′∧ap(n) , ok(n) :¬α,¬α′,¬ko(n)

bl(n) , ok(n)∧¬β∧¬β′ :¬ko(n)
bl(n)

∣∣∣ n : α : β
γ ∈ D

}
.

Although this renders the derivation ofap(n), bl(n), andko(n) mutually exclusive, the
additional justification¬ko(n) is not needed. That is, it is sufficient to removeα : β

γ from
the preference handling process; the rule is found to be blocked anyway.

The following theorem summarizes some technical properties of our translation:

Theorem 3. LetE be a consistent extension ofTBE(∆) for prioritized default theory
∆ = (D,W,<). We have for allδ, δ′ ∈ D that

1. nδ ≺ nδ′ ∈ E iff ¬(nδ ≺ nδ′) 6∈ E;
2. ok(nδ) ∈ E;
3. ap(nδ) ∈ E iff bl(nδ) 6∈ E.

The two last results reveal an alternative choice forδ◦⊥, namely : ∃x∈N.¬ap(x)∧¬bl(x)
⊥ .

One may wonder how our translation avoids the explicit use of total extensions of
the given partial order. The next theorem shows that these total extensions are reflected
by the grounded enumerations of the second group of rules in (5):

Theorem 4. Given the same prerequisites as in Theorem 2, let〈δ◦i 〉i∈I be some
grounded enumeration ofGD(D◦, E◦). For all δ1, δ2 ∈ DE◦∩L, defineδ1 � δ2 iff
k2 < k1 wherekj = min{i ∈ I | δ◦i = (δj)◦x for x ∈ {a, b1, b2}} for k = 1, 2. Then,
� is a total ordering onDE◦∩L such that� ⊆ (< ∩ (DE◦∩L ×DE◦∩L)).

That is, whenever∆ = ∆E according to Definition 7, we have that� is a total ordering
onD such that�⊆<.

Finally, one may ask why we do not need to account for the “inherited” ordering
in Condition 2 of Definition 8. In fact, this is taken care of through the “tags”ap(nδ)
in the consequents of rulesδ◦a that guarantee an isomorphism betweenD andDE in
Definition 8. More generally, such a “tagging of consequents” provides an effective
correspondence between the applicability of default rules and the presence of their con-
sequents in an extension at hand. As a side effect, this facilitates the notion of activeness
in Section 4 by rendering Condition (iii) unnecessary.

6 Compiling Prioritized Answer Sets

In this section, we describe how Brewka and Eiter’s preference approach [3] for ex-
tended logic programs can be encoded within standard answer set semantics, following
the methodology developed in [8]. We commence with a recapitulation of the necessary
concepts.

As usual, aliteral, L, is an expression of the formp or¬p, wherep is an atom. The
set of all literals is denoted byLit. A rule, r, is an expression of the form

L0 ← L1, . . . , Lm,not Lm+1, . . . ,not Ln, (10)

wheren ≥ m ≥ 0, and eachLi (0 ≤ i ≤ n) is a literal. The symbol “not” de-
notesnegation as failure, or weak negation. Accordingly, the classical negation sign
“¬” is in this context also said to representstrong negation. The literalL0 is called the
headof r, and the set{L1, . . . , Lm,not Lm+1, . . . ,not Ln} is thebodyof r. We use
head(r) to denote the head of ruler, andbody(r) to denote the body ofr. Further-
more, letbody+(r) = {L1, . . . , Lm} andbody−(r) = {Lm+1, . . . , Ln}. The elements
of body+(r) are referred to as theprerequisitesof r. If body+(r) = ∅, thenr is a
prerequisite-free rule; if body(r) = ∅, thenr is afact; if r contains no variables, thenr
is ground. We say that a ruler is defeatedby a set of literalsX iff body−(r) ∩X 6= ∅.
As well, each literal inbody−(r) ∩ X is said todefeatr. We definenot X as the set
{not L | L ∈ X}.

A set of literalsX is consistentiff it does not contain a complementary pairp, ¬p
of literals. We say thatX is logically closediff it is either consistent or equalsLit.

A rule baseis any collection of rules; an (extended) logic program, or simply a
program, is a finite rule base. A rule base (program) isprerequisite-free(ground) if all
rules in it are prerequisite-free (ground).

For a rule baseR, we denote byR∗ the ground instantiation ofR over the Herbrand
universe of the languageL of R.

The answer set semantics interprets ground rules of the form (10) as defaults

L1 ∧ . . . ∧ Lm : ¬Lm+1, . . . ,¬Ln
L0

. (11)

A setX of ground literals is called ananswer setof the ground programP iff X is of
the formE ∩Lit, whereE is an extension of the default theory obtained by identifying
each ruler ∈ P as a default of the form (11). Answer sets of programs not necessarily
ground are obtained by taking the answer sets of the ground instantiationP ∗ of P .

A prioritized logic programis a pairΠ = (P,<), whereP is a logic program and
< is a strict partial order. Following [3], the ground instantiation of a prioritized logic
program(P,<) is obtained as follows: LetP ∗ be the ground instantiation ofP and
definer∗ <∗ s∗ for r∗, s∗ ∈ P ∗ providingr∗, s∗ are instances ofr, s ∈ P , respectively,
such thatr < s. If <∗ is a strict partial order, then the pair(P ∗, <∗) defines the ground
instantiation of(P,<); otherwise, the ground instantiation of(P,<) is undefined. In
the sequel, we will be concerned with ground prioritized programs only.

A fully prioritized logic programis a prioritized logic program(P,<) where<
is a total ordering. Prioritized answer sets of prioritized logic programs are defined
similarly to prioritized extensions of prioritized default theories. That is to say, first the
prerequisite-free case is treated, and afterwards the general case is addressed in terms
of the prerequisite-free case.

For fully prioritized ground programs, Definitions 5 and 7 boil down to the fol-
lowing operator: LetΠ = (P,<) be a fully prioritized ground prerequisite-free logic
program,〈ri〉i∈I be an enumeration of the ordering<, andX be a set of literals. Then,
CΠ(X) is the smallest logically closed set of literals containing

⋃
i∈I Xi, where

Xi =


⋃
j<iXj if ri is defeated by

⋃
j<iEj , or

head(ri) ∈ X andri is defeated byX;⋃
j<iXj ∪ {head(ri)} otherwise.

As in the default logic case, this construction is unique in the sense that for a fully
prioritized prerequisite-free ground programΠ, there is at most one answer setX of P
such thatCΠ(X) = X (cf. [3, Lemma 4.1]). Accordingly, this set is referred to as the
prioritized answer setof Π, if it exists. Prioritized answer sets of an arbitrary (i.e., not
necessarily prerequisite-free) ground fully prioritized programΠ = (P,<) are given
by setsX of ground literals which are prioritized answer sets of the prioritized program
ΠX = (PX , <X), where<X is constructed just as the ordering<E of Definition 8,
andPX results fromP by (i) deleting any ruler ∈ P such thatbody+(r) 6⊆ X, and (ii)
removing any prerequisites in the body of the remaining rules. Lastly,X is a prioritized
answer set of a ground prioritized logic program(P,<) iff (i) X is a (regular) answer
set ofP and (ii)X is a prioritized answer set of some fully prioritized program(P,<′)
such that<⊆<′.

This concludes the review of prioritized answer sets according to [3]; we continue
with a compilation of this approach in standard answer set semantics.

As in Section 5, given a ground prioritized programΠ over languageL, we assume
a disjoint languageL′ containing literalsL′ for eachL in L. Likewise, ruler′ results
from r by replacing each literalL in r by L′. We maintain for rules the same naming
convention as for defaults, i.e., the termnr serves as name for ruler, similarly writing
n : r as before. As well, the languageL◦ extendsL ∪ L′ by new ground atoms(nr ≺
ns), ok(nr), ko(nr), ry(nr,ns), bl(nr), andap(nr), for eachr, s in Π.

Definition 11. LetΠ = (P,<) be a prioritized ground logic program overL such that
P = {r1, . . . , rk}. Then, the logic programT lpBE(Π) overL◦ is given by

P ∪
⋃
r∈P τ(r) ∪ {(n1 ≺ n2)←| (r1, r2) ∈ <},

where τ(r) consists of the following collection of rules, forL ∈ body+(r), K ∈
body−(r), ands ∈ P :

a1(r) : head(r′)← ap(nr)
a2(r) : ap(nr)← ok(nr), body(r),not body−(r′)

b1(r, L) : bl(nr)← ok(nr),not L,not L′

b2(r,K) : bl(nr)← ok(nr),K,K ′

c1(r) : ok(nr)← ry(nr,nr1), . . . , ry(nr,nrk)
c2(r, s) : ry(nr,ns)← not (nr ≺ ns)
c3(r, s) : ry(nr,ns)← (nr ≺ ns), ap(ns)
c4(r, s) : ry(nr,ns)← (nr ≺ ns), bl(ns)
c5(r, s) : ry(nr,ns)← ko(ns)

d(r) : ⊥ ← not ok(nr)

e(r,K) : ko(nr)← head(r),K

The first group of rules inτ(r) expresses applicability and blocking conditions ofr
and contains the counterparts of the defaultsδ◦a, δ◦b1 , andδ◦b2 in Definition 10, respec-
tively. To wit, applicability ofr is captured by the two rulesa1(r) anda2(r), while k
rules of the formb1(r, L) andb2(r,K) detect blockage ofr, wherek is the number of
literals in body(r). The second group of rules unfolds axiom (9) and relies on auxil-
iary atomsry(·, ·) (“ready”), taking care of instantiating the quantification over names
expressed in (9). Finally, rulesd(r) ande(r,K) correspond toδ◦ko , andδ◦⊥, respectively.

We obtain the following result corresponding to Theorem 1:

Theorem 5. LetΠ = (P,<) be a prioritized ground logic program overL andX a
set of literals overL.

X is a prioritized answer set ofΠ iff X = Y ∩ L andY is a (regular) answer set
of T lpBE(Π).

Additionally, given suitable concepts for the present case, analogous results to Theo-
rems 2, 3, and 4 can be shown. We just note the counterpart of Theorem 3:

Theorem 6. LetX be a consistent answer set ofT lpBE(Π) for prioritized logic program
Π = (P,<). We have for allr ∈ P that

1. ok(nδ) ∈ X;

2. ap(nδ) ∈ X iff bl(nδ) 6∈ X.

The approach is implemented in Prolog and serves as a front-end to the logic pro-
gramming systemsdlv [9] and smodels [13]. Our current prototype, calledplp, is
available athttp://www.cs.uni-potsdam.de/˜torsten/plp/ . This URL
contains also diverse examples taken from the literature. The implementation differs
from the approach described here, in that the translation applies to named rules only; it
thus leaves unnamed rules unaffected.

For illustration, consider the logic programming counterpart of Example (4) in the
syntax ofplp :

b :- name(1), not -b, a.
-b :- name(2), not b. 2<1.

a :- name(3), not -a. 3<2.

We use ‘- ’ (or ‘ neg ’) for classical negation and ‘not ’ (or ‘ ˜ ’) for negation as
failure. Furthermore,name(·) is used to identify rule names; and natural numbers
serve as names. Note that our implementation handles transitivity implicitly, so that
there is no need to specify3<1 .

This is then translated into the following (intermediate) standard program:

(1) b :- not neg b, a.
(2) b1 :- ap(1).
(3) ap(1) :- name(1), ok(1), not neg b, not neg b1, a.
(4) bl(1) :- ok(1), neg b, neg b1.
(5) bl(1) :- ok(1), not a, not a1.
(6) ko(1) :- b, neg b.
(7) neg b :- not b.
(8) neg b1 :- ap(2).
(9) ap(2) :- name(2), ok(2), not b, not b1.

(10) bl(2) :- ok(2), b, b1.
(11) ko(2) :- neg b, b.
(12) a :- not neg a.
(13) a1 :- ap(3).
(14) ap(3) :- name(3), ok(3), not neg a, not neg a1.
(15) bl(3) :- ok(3), neg a, neg a1.
(16) ko(3) :- a, neg a.
(17) 2 < 1.
(18) 3 < 2.
(19) neg M < N :- name(N), name(M), N < M.
(20) N < M :- name(N), name(M), name(O), N < O, O < M.
(21) ok(N) :- name(N), ry(N, 1), ry(N, 2), ry(N, 3).
(22) ry(N, M) :- name(N), name(M), not N < M.
(23) ry(N, M) :- name(N), name(M), N < M, ap(M).
(24) ry(N, M) :- name(N), name(M), N < M, bl(M).
(25) ry(N, M) :- name(N), name(M), ko(M).
(26) false :- name(N), not ok(N).

The original rules, viz.r1, r2, andr3, are given by(1),(7), and(12) . The addi-
tional encoding of, e.g., rule(1) is given by(2) to (6) . We append the symbol ‘1’

for priming here, e.g.,b1 is the primed version ofb. In detail,(2) and(3) correspond
to a1(r1) anda2(r1), (4) and(5) correspond tob2(r1, B) andb1(r1, A), and finally
(6) corresponds toe(r1, B). Rules(19) and(20) are additional rules enforcing a
strict partial order. Rules(21) to (25) account forc1(r) to c5(r, s). Lastly, (26)
implementsd(r).

The above program is then refined once more in order to account for some special
features ofdlv andsmodels , like implementation of classical negation ‘neg ’ and
‘ false ’. Also, an extensional database for rule names is provided.

Calling one of these provers with the respective input corresponding to the above
program, we obtain the desired prioritized answer set containing the literalsA andB
(i.e., represented bya andb).

7 Conclusion

We have shown how the approach of Brewka and Eiter, both with respect to extended
logic programs [3] and to default logic [4], can be expressed in our general framework
for preferences [6, 8]. On the one hand, this illustrates the generality of our framework;
on the other hand, it sheds light on Brewka and Eiter’s approaches, since it provides a
translation and encoding of their approaches into extended logic programs and default
logic, respectively. As well, our encoding allows a straightforward implementation of
[3] via a translation into extended logic programs.

Lastly, we note that our approach described in [8] useddynamicpreference informa-
tion, in that preferences were expressed within a logic program. As well, in the case of
default logic, [6] also describes the incorporation of dynamic preferences. Thus in these
approaches, preferences can be encoded as holding only in specific contexts, holding
by default, and so on. Such a dynamic setting was also sketched in [4]. It is a straight-
forward matter to extend Definitions 10 and 11 to handle this dynamic case as well.

AcknowledgementsThe first author was partially supported by a Research Grant from
the Natural Sciences and Engineering Research Council of Canada. The second au-
thor was partially supported by the German Science Foundation (DFG) under grant
FOR 375/1-1, TP C. The third author was partially supported by the Austrian Science
Fund (FWF) under grants N Z29-INF and P13871-INF.

References

[1] F. Baader and B. Hollunder. How to prefer more specific defaults in terminological default
logic. InProceedings of the International Joint Conference on Artificial Intelligence, pages
669–674, 1993.

[2] G. Brewka. Reasoning about priorities in default logic. InProceedings of the AAAI National
Conference on Artificial Intelligence, volume 2, pages 940–945. The AAAI Press/The MIT
Press, 1994.

[3] G. Brewka and T. Eiter. Preferred answer sets for extended logic programs.Artificial
Intelligence, 109(1-2):297–356, 1999.

[4] G. Brewka and T. Eiter. Prioritizing default logic. In St. Hölldobler, editor,Intellectics and
Computational Logic — Papers in Honour of Wolfgang Bibel. Kluwer Academic Publish-
ers, 2000. To appear.

[5] P. Cholewínski, V. Marek, and M. Truszczýnski. Default reasoning system DeReS. In
Proceedings of the Fifth International Conference on the Principles of Knowledge Repre-
sentation and Reasoning, pages 518–528. Morgan Kaufmann Publishers, 1996.

[6] J. Delgrande and T. Schaub. Compiling reasoning with and about preferences into default
logic. In M. Pollack, editor,Proceedings of the International Joint Conference on Artificial
Intelligence, pages 168–174. Morgan Kaufmann Publishers, 1997.

[7] J. Delgrande, T. Schaub, and H. Tompits. A compiler for ordered logic programs. In
C. Baral and M. Truszczýnski, editors,Proceedings of the Eighth International Workshop
on Non-Monotonic Reasoning. arXiv.org e-Print archive, 2000. System Abstract.

[8] J. Delgrande, T. Schaub, and H. Tompits. Logic programs with compiled preferences. In
C. Baral and M. Truszczýnski, editors,Proceedings of the Eighth International Workshop
on Non-Monotonic Reasoning. arXiv.org e-Print archive, 2000.

[9] T. Eiter, N. Leone, C. Mateis, G. Pfeifer, and F. Scarcello. A deductive system for non-
monotonic reasoning. In J. Dix, U. Furbach, and A. Nerode, editors,Proceedings of the
Fourth International Conference on Logic Programming and Non-Monotonic Reasoning,
volume 1265 ofLecture Notes in Artificial Intelligence, pages 363–374. Springer Verlag,
1997.

[10] M. Gelfond and V. Lifschitz. Classical negation in logic programs and deductive databases.
New Generation Computing, 9:365–385, 1991.

[11] T. Janhunen. Classifying semi-normal default logic on the basis of its expressive power.
In M. Gelfond, N. Leone, and G. Pfeifer, editors,Proceedings of the Fifth International
Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR’99), volume
1730 ofLecture Notes in Artificial Intelligence, pages 19–33. Springer Verlag, 1999.

[12] J. McCarthy. Applications of circumscription to formalizing common-sense knowledge.
Artificial Intelligence, 28:89–116, 1986.

[13] I. Niemel̈a and P. Simons. Smodels: An implementation of the stable model and well-
founded semantics for normal logic programs. In J. Dix, U. Furbach, and A. Nerode, ed-
itors, Proceedings of the Fourth International Conference on Logic Programing and Non-
monotonic Reasoning, pages 420–429. Springer, 1997.

[14] D. Poole. A logical framework for default reasoning.Artificial Intelligence, 36:27–47,
1988.

[15] R. Reiter. A logic for default reasoning.Artificial Intelligence, 13(1-2):81–132, 1980.

