
Representing Paraconsistent Reasoning via
Quantified Propositional Logic�

Philippe Besnard1, Torsten Schaub2��, Hans Tompits3, and Stefan Woltran3

1 IRIT-CNRS
118, route de Narbonne, F–31062 Toulouse Cedex

besnard@irit.fr
2 Institut für Informatik, Universität Potsdam,
Postfach 90 03 27, D–14439 Potsdam, Germany

torsten@cs.uni-potsdam.de
3 Institut für Informationssysteme 184/3, Technische Universität Wien,

Favoritenstraße 9–11, A–1040 Vienna, Austria
[tompits,stefan]@kr.tuwien.ac.at

Abstract. Quantified propositional logic is an extension of classical
propositional logic where quantifications over atomic formulas are per-
mitted. As such, quantified propositional logic is a fragment of second-
order logic, and its sentences are usually referred to as quantified Boolean
formulas (QBFs). The motivation to study quantified propositional logic
for paraconsistent reasoning is based on two fundamental observations.
Firstly, in recent years, practicably efficient solvers for quantified propo-
sitional logic have been presented. Secondly, complexity results imply
that there is a wide range of paraconsistent reasoning problems which
can be efficiently represented in terms of QBFs. Hence, solvers for QBFs
can be used as a core engine in systems prototypically implementing sev-
eral of such reasoning tasks, most of them lacking concrete realisations.
To this end, we show how certain paraconsistent reasoning principles can
be naturally formulated or reformulated by means of quantified Boolean
formulas. More precisely, we describe polynomial-time constructible en-
codings providing axiomatisations of the given reasoning tasks. In this
way, a whole variety of a priori distinct approaches to paraconsistent
reasoning become comparable in a uniform setting.

1 Introduction

Paraconsistent reasoning, that is, reasoning from inconsistent information, is a
central yet rather complex task underlying the vital reasoning capacities of in-

� The third and fourth author were partially supported by the Austrian Science Foun-
dation (FWF) under grant P15068, as well as by the European Commission under
project IST-2001-33570 INFOMIX and the IST-2001-33123 CologNeT Network of
Excellence.

�� Affiliated with the School of Computing Science at Simon Fraser University, Burnaby,
Canada.

L. Bertossi et al. (Eds.): Inconsistency Tolerance, LNCS 3300, pp. 84–118, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Representing Paraconsistent Reasoning via Quantified Propositional Logic 85

telligent agents. In view of our daily information feed, it even becomes more and
more important every day. As opposed to neighbouring fields like database sys-
tems or nonmonotonic reasoning, whose mainstream has or is about to converge
to a canonical approach, viz. relational algebra or answer-set programming, re-
spectively, the inherent manifoldness of reasoning from inconsistent information
(still) offers a whole variety of different approaches. As a consequence, there is
a lack of implemented systems for paraconsistent reasoning.

In this chapter, we address paraconsistent reasoning from the perspective of
quantified propositional logic, which is an extension of classical propositional logic
where quantifications over atomic formulas are permitted. As such, quantified
propositional logic is a fragment of second-order logic, and its sentences are
usually referred to as quantified Boolean formulas (QBFs).

The motivation to study quantified propositional logic for paraconsistent rea-
soning is based on two fundamental observations. Firstly, in recent years, prac-
ticably efficient solvers for quantified propositional logic have been presented.
Secondly, in view of results from complexity theory, a wide range of paraconsis-
tent reasoning problems can be efficiently represented in terms of QBFs. Hence,
solvers for QBFs can be used as a core engine in systems prototypically imple-
menting several of such reasoning tasks, most of them lacking concrete realisa-
tions.

The basic contribution of this chapter is to illustrate how paraconsistent
reasoning principles can be naturally formulated or reformulated by means of
quantified Boolean formulas. That is to say, we are interested in encodings of
paraconsistency in terms of QBFs. More specifically, given a paraconsistent in-
ference relation �p, we provide a mapping Tp[·; ·], assigning, to each theory T
and each formula ϕ, a QBF Tp[T ;ϕ] such that

1. T �p ϕ iff Tp[T ;ϕ] is valid in quantified propositional logic,
2. the size of Tp[T ;ϕ] is polynomial in the size of T and ϕ, and
3. determining the validity of QBFs resulting from translation Tp[·; ·] is not

computationally harder than checking inference under �p.

Hence, encodings of this kind provide axiomatisations of the respective inference
relation which are efficiently computable. In this way, a whole variety of a priori
distinct approaches to paraconsistent reasoning can be compared in a uniform
setting.

Our chapter is organised as follows. We start with an introduction to quanti-
fied propositional logic in Section 2, including basic intuitions, historical remarks,
formal preliminaries, and complexity issues. Notably, this section introduces half
a dozen basic QBF modules that can be used as building blocks for assembling
axiomatisations of numerous reasoning tasks. These modules are then used in
Section 3 to conduct three case-studies, demonstrating how existing approaches
to paraconsistent reasoning can be axiomatised and thus implemented by means
of QBFs.

86 P. Besnard et al.

2 Quantified Propositional Logic

2.1 Overview and Motivation

As mentioned previously, the language of quantified propositional logic is an
extension of classical propositional logic in which formulas may contain quantifi-
cations over propositional atoms. Sentences of this language are called quantified
Boolean formulas (QBFs), and often in the literature one identifies this term with
the language of quantified propositional formulas simpliciter.

As in first-order logic, the quantifiers permitted in quantified propositional
logic are either existential or universal. We illustrate the underlying ideas by
some simple examples.

Consider the propositional formula

(p → q) ∧ (q → p). (1)

Clearly, setting both p and q jointly to either true or false makes (1) true,
otherwise the formula evaluates to false. Hence, (1) is satisfiable but not valid.

Imagine we want to talk about satisfiability or validity within the logical
language itself. In other words, we want to capture the meta-linguistic concept
of truth assignments within a suitable extension of the object language. To this
end, we express a proposition of form

“there exist truth assignments to p and q such that (p → q) ∧ (q → p)
evaluates to true”

in the language of QBFs, using the formula

∃p∃q
(

(p → q) ∧ (q → p)
)
. (2)

Analogously, in order to talk about validity of a formula, say of (1), we may
write

∀p∀q
(

(p → q) ∧ (q → p)
)
. (3)

Hence, we extended the alphabet of classical propositional logic by two quan-
tifier symbols, ∃ and ∀. We call ∃ the existential (Boolean) quantifier symbol and
∀ the universal (Boolean) quantifier symbol. By the intuitive meaning of quan-
tifiers, we immediately get that QBF (2) evaluates to true, whereas QBF (3)
evaluates to false.

However, using the extended language, we can construct further formulas,
for instance,

∃p∀q
(

(p → q) ∧ (q → p)
)

; or (4)

∀p∃q
(

(p → q) ∧ (q → p)
)
. (5)

Formula (4) can be interpreted like this:

“Does there exist a truth assignment to p such that, for all truth assign-
ments to q, formula (1) evaluates to true?”

Representing Paraconsistent Reasoning via Quantified Propositional Logic 87

By inspecting the usual truth conditions for (p → q) ∧ (q → p), it is clear
that this is not the case. On the other hand, QBF (5) evaluates to true.

QBFs of form (2)–(5) are all closed QBFs since each variable v occurs in the
scope of a quantifier ∃v or ∀v. Open formulas like

∃q
(

(p → q) ∧ (q → p)
)

(6)

can be evaluated, analogously to open formulas in predicate logic, with respect
to interpretations, i.e., given truth assignments for the free variables (in our case,
p).

All formulas (1)–(6) are well-formed QBFs. So, each classical propositional
formula is a fortiori a QBF. Moreover, for every atom p, we allow the unary
operators ∃p and ∀p to appear “anywhere” in a QBF, not just at the beginning
of a formula. For instance,

∃p
(
∃q (p → q) ∧ ∀q (q → p)

)

is also a well-formed QBF. It is left to the reader to show that this formula
evaluates to true.

In general, QBFs can be seen as a conservative extension of classical proposi-
tional logic, i.e., to each QBF we can assign a logically equivalent propositional
formula. However, the advantage of QBFs is their compactness: to express a QBF
as a logically equivalent propositional formula, one has to face an exponential
increase of the formula size, in general.

In summarising, one may consider QBFs as an extension of classical proposi-
tional logic in which reasoning over truth assignments within the object language
can be expressed. A different way to think of QBFs is to regard them as a sub-
class of second-order logic, restricting predicates to be of arity 0, and therefore
to consider formulas without function symbols and object variables.

2.2 Usability of QBFs

Historically, among the first logical analyses of systems dealing with quantifiers
over propositional variables are the investigations due to Russell (“theory of im-
plication” [63]) and �Lukasiewicz and Tarski (“erweiterter Aussagenkalkül” [45]),
not to mention the monumental Principia Mathematica [70]. The particular
idea of quantifying propositional variables was extended in Leśniewski’s system
of protothetic logic [42, 65] where variables whose values are truth functions are
allowed and quantification is defined over these variables.1

However, it took several decades until, in the beginning of the seventies of
the last century, propositional quantification got into the spotlight of computer
science, in particular of the new and developing field of complexity theory [34].

1 A more elaborate overview on these early historical aspects of propositional quan-
tification can be found in §28 of Church’s Introduction to Mathematical Logic [21].

88 P. Besnard et al.

Meyer and Stockmeyer [48] were the first who showed that the evaluation prob-
lem for QBFs is complete for the complexity class PSPACE—this class comprises
all problems which can be decided by deterministic Turing machines with a space
requirement polynomially related to the representation size of the problem. In
fact, what was considered there were Boolean expressions, and the quantifiers
were part of the problem description and not of the language. Already in [47],
the same authors introduced the polynomial hierarchy [67] as an analogue to
the arithmetic hierarchy of recursion theory. Starting from ΣP

1 = NP (NP com-
prises all problems which can be decided by nondeterministic Turing machines
in polynomial time), they defined classes ΣP

k+1, for k ≥ 1,

“as the family of sets of words accepted in nondeterministic polynomial
time by Turing machines with oracles for sets ΣP

k ” [48].

In that paper, it was already shown that each member of the hierarchy pos-
sesses a complete decision problem, given by the evaluation problem of QBFs
having a specific quantifier structure (viz., of QBFs being in prenex normal
form2 and such that both the leading quantifier and the number of quantifier
alternations is fixed). Other classes, like ΠP

k and ∆P
k , which are today identified

as basic components of the polynomial hierarchy, first appeared in [67, 72].
In view of the above completeness results, the evaluation problem for QBFs

plays the same role for the respective classes of the polynomial hierarchy as
the satisfiability problem for classical propositional logic, sat, does for the cen-
tral complexity class NP. More precisely, hardness for a particular class in the
polynomial hierarchy can be shown by reducing the evaluation problem for the
respective class of QBFs into the problem under consideration (see [41, 66, 16]
for prominent PSPACE-completeness results, or [36, 30] for complexity results
for nonmonotonic logics which reside on the second level of the polynomial hier-
archy). On the other hand, if we know membership for a problem in some class
of the polynomial hierarchy, we are guaranteed that there must exist an efficient
encoding in terms of QBFs having a restricted number of quantifier alternations.

Note that the latter observation allows us to find appropriate translation
schemas into QBFs such that the resultant formulas can be employed to decide
the original problem. Moreover, in many cases, satisfying truth assignments to
the free variables in such QBFs correspond to solutions of the original reasoning
task. Such encodings provide us thus with a uniform axiomatisation for all the
considered problems, which leads to further insights as well as allowing the com-
parison of differing problems in a well-studied and common setting. In fact, this
is one of the aims of this article, where different paraconsistent reasoning princi-
ples are represented as QBFs, summarising and extending previous work [12, 13].
Other application areas of this general methodology, such as expressing planning
problems or different forms of nonmonotonic reasoning in terms of QBFs, is re-
ported, e.g., in [60, 6, 69, 27, 31, 68, 25, 28, 53].

2 The notion of a prenex normal form for QBFs is defined analogously as for formulas
in first-order logic; cf. also Section 2.4 for more details.

Representing Paraconsistent Reasoning via Quantified Propositional Logic 89

However, the practical impact of this line of research clearly depends on the
capabilites of suitable QBF-solvers which can be applied as underlying inference
engines in order to solve the reduced problems. In contrast to similar methods
using reductions to sat, where impressive results have been achieved by em-
ploying sophisticated sat-solvers (for instance in the area of planning [37, 38]),
practical implementations for evaluating QBFs lagged behind for quite a long
time. This changed when Kleine-Büning et al. [39] presented the first imple-
mented QBF-solver, which was based on a generalisation of the resolution prin-
ciple [62]. Later, an alternative—and more promising—approach was presented
by Cadoli et al. [17] relying on an adaption of the Davis-Putnam-Logemann-
Loveland (DPLL) procedure [24, 23] for propositional logic to quantified proposi-
tional logic. Starting from this seminal paper, a number of other solvers for QBFs
have been developed, like, e.g., the systems described in [32, 35, 43, 61, 73], which
are based on improvements of the DPLL procedure for QBFs and by adapting
several methods known from propositional logic, or by introducing new meth-
ods. It is worth mentioning that one of these solvers was also designed to run
on a distributed system [32, 64]. Hence, the availability of such a parallel algo-
rithm, and the fact that we can represent a complex problem by means of QBFs
faithfully, we directly obtain a distributed decision procedure for this particular
problem. This convenient situation obviously avoids designing special-purposed
distributed algorithms for the problem under consideration.

Recently, Ayari and Basin [6] argued that DPLL procedures need not to be
the best choice in general, and an alternative approach for solving QBFs was
thus put forth (a similar idea is also outlined in [54]). These new ideas promise to
be very efficient, at least on some particular classes of QBFs, a situation similar
to the case when binary decision diagrams (BDDs) [15, 49] were proposed to
evaluate QBFs.

2.3 Formal Postulates of Quantified Propositional Logic

Definition 1. The alphabet (or signature) of the language of quantified propo-
sitional logic consists of the following items:

1. a countable set of propositional variables (or atoms);
2. the logical constants “�” and “⊥”;
3. the logical connectives “¬”, “∨ ”, “∧ ”, “→ ”, and “≡ ”;
4. the quantification symbols “∃” and “∀”; and
5. the auxiliary symbols “(” and “)”. �

Definition 2. The set of quantified Boolean formulas (QBFs), or (well-
formed) formulas of quantified propositional logic, is inductively defined as fol-
lows:

1. any propositional variable and any logical constant is a QBF;
2. if Φ is a QBF, then (¬Φ) is a QBF;
3. if Φ and Ψ are QBFs, then (Φ ∧ Ψ), (Φ ∨ Ψ), (Φ → Ψ), and (Φ ≡ Ψ) are

QBFs;

90 P. Besnard et al.

4. if p is a propositional variable and Φ is a QBF, then (∃pΦ) and (∀pΦ) are
QBFs;

5. the only QBFs are those given by 1–4. �

We tacitly assume the usual conventions concerning the ommission of paren-
theses in formulas where no ambiguities can arise. Furthermore, we use upper-
case Greek letters as meta-variables for QBFs, whilst lower-case Greek letters
stand for propositional formulas (i.e., quantifier-free QBFs).

By a theory we understand a finite set of quantifier-free formulas. Often,
we identify a theory, T , with the (finite) conjunction of its elements

∧
φ∈T φ.

Furthermore, for T = ∅, we define
∧
φ∈T = �.

Let Q ∈ {∃,∀} be a quantifier symbol. For a formula QpΨ , we call Ψ the
scope of Qp. Moreover, given a finite set P of atoms, QP Ψ stands for any QBF
Qp1Qp2 . . .QpnΨ such that the variables p1, . . . , pn are pairwise distinct and
P = {p1, . . . , pn}.

Our definition of quantified Boolean formulas is rather unrestricted in two
ways: Firstly, in contrast to some formalisations of QBFs in the literature, we
allow quantifiers to appear anywhere in a formula. Secondly, we do not stipulate
any restriction on the quantification, i.e., we do not require that a quantified
variable p in QpΦ (Q ∈ {∃,∀}) occurs in the scope Φ of Qp. For example,
(∃p (q ∧ r)) is a QBF, and so is (∃p (∀p (p → q))).

As usual, an occurrence of a variable p in a QBF Φ is free iff it does not
appear in the scope of a quantifier Qp, otherwise the occurrence of p is bound.
If Φ contains no free variable occurrences, then Φ is closed, otherwise Φ is open.
Furthermore, Φ[p1/Ψ1, . . . , pn/Ψn] denotes the result of uniformly substituting
in Φ each free occurrence of a variable pi by a formula Ψi, for 1 ≤ i ≤ n.

The semantics of quantified propositional logic is based on the following no-
tion. Let P be a non-empty set of atoms. A (two-valued) interpretation, I, (over
P) is a function assigning to each atom from P an element from {t, f}. If I(p) = t,
then p is true under I, otherwise p is false under I. We usually view interpreta-
tions as subsets of P such that p is true under I just in case p ∈ I. Interpretations
induce truth values of general formulas recursively in the following way.

Definition 3. Let P be a non-empty set of atoms and Φ a QBF such that all
atoms occurring in Φ belong to P . The truth value, vI(Φ), of Φ under an inter-
pretation I : P → {t, f} is defined by the following conditions:

1. if Φ = �, then vI(Φ) = t, and if Φ = ⊥, then vI(Φ) = f ;
2. if Φ = p, for an atom p, then vI(Φ) = I(p);
3. if Φ = ¬Ψ , then vI(Φ) = t if vI(Ψ) = f , otherwise vI(Φ) = f ;
4. if Φ = (Φ1 ∧Φ2), then vI(Φ) = t if vI(Φ1) = vI(Φ2) = t, otherwise vI(Φ) = f ;
5. if Φ = (Φ1 ∨ Φ2), then vI(Φ) = t if vI(Φ1) = 1 or vI(Φ2) = 1, otherwise

vI(Φ) = f ;
6. if Φ = (Φ1 → Φ2), then vI(Φ) = t if vI(Φ1) = f or vI(Φ2) = t, otherwise

vI(Φ) = f ;
7. if Φ = (Φ1 ≡ Φ2), then vI(Φ) = t if vI(Φ1) = vI(Φ2), otherwise vI(Φ) = f ;

Representing Paraconsistent Reasoning via Quantified Propositional Logic 91

8. if Φ = ∀pΨ , then vI(Φ) = t if vI(Ψ [p/�]) = vI(Ψ [p/⊥]) = t, otherwise
vI(Φ) = f ;

9. if Φ = ∃pΨ , then vI(Φ) = t if vI(Ψ [p/�]) = t or vI(Ψ [p/⊥]) = t, otherwise
vI(Φ) = f .

Observe that it obviously holds that

vI(∀pΨ) = vI(Ψ [p/�] ∧ Ψ [p/⊥]) and
vI(∃pΨ) = vI(Ψ [p/�] ∨ Ψ [p/⊥]).

We say that Φ is true under I if vI(Φ) = t, otherwise Φ is false under I.
If vI(Φ) = t, then I is a model of Φ. If Φ possesses some model, then Φ is
satisfiable, otherwise Φ is unsatisfiable. If Φ is true under every interpretation,
then Φ is valid. As usual, we also write |= Φ to express that Φ is valid.

It is easily seen that the truth value of a QBF Φ under interpretation I
depends only on the free variables in Φ. Hence, without loss of generality, for
determining the truth value of QBFs, we may restrict our attention to interpre-
tations which contain only atoms occurring free in the given QBF. In particular,
closed QBFs are either true under every interpretation or false under every inter-
pretation, i.e., they are either valid or unsatisfiable. So, for closed QBFs, there is
no need to refer to particular interpretations. As well, if a closed QBF Φ is valid,
we say that Φ evaluates to true, and, correspondingly, if Φ is unsatisfiable, we
say that Φ evaluates to false. Two formulas (i.e., ordinary propositional formu-
las or QBFs) are (logically) equivalent iff they possess the same models. Thus,
formulas Φ and Ψ are logically equivalent iff Φ ≡ Ψ is valid.

We also use |= to refer to the semantic consequence relation between a theory
(i.e., a finite set of propositional formulas) and a propositional formula, defined
in the usual way. Accordingly, for a theory T , the deductive closure of T , i.e.,
the set of all semantic consequences of T , is given by Cn(T) = {ϕ | T |= ϕ}.
Furthermore, var(T) denotes the set of all atoms occurring in T .

Similar to classical first-order logic, there are several results concerning the
shifting and renaming of quantifiers. We list some fundamental relations below
and refer the interested reader to [29, 71] for a fuller discussion.

Proposition 1. Let p, q be atoms and Q ∈ {∀,∃}. Furthermore, let Φ, Ψ be
QBFs such that Ψ does not contain free occurrences of p. Then,

1. |= (¬∃pΦ) ≡ ∀p(¬Φ),
2. |= (¬∀pΦ) ≡ ∃p(¬Φ),
3. |= (Ψ ◦ QpΦ) ≡ Qp(Ψ ◦ Φ), for ◦ ∈ { ∧ , ∨ , → }, and
4. |= (Qq Ψ) ≡ (QpΨ [q/p]).

2.4 Computational Complexity

We assume the reader familiar with the basic concepts of complexity theory
(see, e.g., [52] for a comprehensive introduction). Relevant for our purposes are

92 P. Besnard et al.

the elements of the polynomial hierarchy [67], introduced in [48] as a computa-
tional analogue to the arithmetic hierarchy of recursion theory, consisting of the
following sequence of classes:

∆P
0 = ΣP

0 = ΠP
0 = P,

and, for all k ≥ 0,

∆P
k+1 = PΣ

P
k , ΣP

k+1 = NPΣ
P
k , and ΠP

k+1 = co-ΣP
k+1.

Here, P is the class of all problems solvable on a deterministic Turing machine
in polynomial time; NP is similarly defined but using a nondeterministic Turing
machine as underlying computing model; and, for complexity classes C and A,
the notation CA stands for the relativised version of C, consisting of all problems
which can be decided by Turing machines of the same sort and time bound as in
C, only that the machines have access to an oracle for problems in A. As well,
co-C is the class of all problems which are complementary to the problems in C.
We note that NP = ΣP

1 , co-NP = ΠP
1 , and P = ∆P

1 .
The cumulative polynomial hierarchy is given by the union

⋃∞
k=0Σ

P
k . We say

that a problem is located at the kth level of the polynomial hierarchy iff it is
contained in ∆P

k+1 and it is either ΣP
k -hard or ΠP

k -hard.
A further relevant family of complexity classes is given by the sequence of

classes DP
k , k ≥ 1, where each DP

k consists of all problems expressible as the
conjunction of a problem in ΣP

k and a problem in ΠP
k . Notice that, for all k ≥ 1,

ΣP
k ⊆ DP

k ⊆ ΣP
k+1 holds; in fact, both inclusions are widely conjectured to be

strict. Moreover, any problem in DP
k can be solved with two ΣP

k oracle calls, and
is thus intuitively easier than a problem complete for ∆P

k+1.
The classes ΣP

k and ΠP
k are closely related to the evaluation problem of

QBFs—in particular, to QBFs which are given in prenex normal form: A QBF
Φ is in prenex normal form iff it is of the form

Q1P1Q2P2 . . .QnPn φ,

where φ is a propositional formula, Qi ∈ {∃,∀} such that Qi �= Qi+1 for 1 ≤ i ≤
n−1, and Pi are disjoint sets of propositional variables for 1 ≤ i ≤ n. If Q1 = ∃,
then Φ is called an (n,∃)-QBF, and if Q1 = ∀, then Φ is called an (n,∀)-QBF.
Without going into details, we mention that any QBF is easily transformed into
an equivalent QBF in prenex normal form (by applying, among other reduction
steps, the equivalences depicted in Proposition 1).

Proposition 2. For every k ≥ 0, we have that

1. deciding the truth for closed (k,∃)-QBFs is ΣP
k -complete, and

2. deciding the truth for closed (k,∀)-QBFs is ΠP
k -complete.

These complexity results are central for our subsequent encodings. In partic-
ular, we are interested in representing a given paraconsistent inference relation
�p via a QBF-encoding Tp[·; ·] such that

Representing Paraconsistent Reasoning via Quantified Propositional Logic 93

1. Tp[·; ·] is faithful, i.e., for each theory T and each formula ϕ, T �p ϕ iff
Tp[T ;ϕ] evaluates to true,

2. Tp[T ;ϕ] is computable in polynomial time, for each theory T and each for-
mula ϕ, and

3. determining the truth values of the QBFs resulting from Tp[·; ·] is not com-
putationally harder than checking inference under �p.

The translation Tp[·; ·] is then called an adequate translation. For instance, if
checking T �p ϕ, for a given theory T and a given formula ϕ, is known to be in
complexity class ΣP

2 , our desired translation Tp[T ;ϕ] should lead, for each T and
ϕ, to a (2,∃)-QBF, i.e., a QBF with at most one quantifier alternation, whose
size is polynomial in the size of T and ϕ.

2.5 Basic QBF-Modules

We next discuss how QBFs can be employed to express some fundamental rea-
soning tasks concerning the consistency of propositional theories. Computing
tasks of this kind will be required frequently throughout the paper as subtasks
for other problems. Hence, the “modules” discussed in this section play the role
of “building blocks” for the subsequent encodings of different paraconsistent
reasoning tasks.

Expressing consistency. First of all, since existential quantification refers to sat-
isfiability, we are easily capable to decide whether a given theory W is consistent,
i.e., whether W �|= ⊥. Indeed, simply define

Cons [W] = ∃P (
∧
ψ∈W

ψ),

where P = var(W). Hence, Cons [W] is always closed, and the following relation
is easily seen:

Proposition 3. A theory W is consistent iff Cons [W] evaluates to true.

We now extend this simple module as follows. Assume we have given two
propositional theories, W and R, and we want to identify all subsets S ⊆ R such
that W ∪ S is consistent, i.e., our task is to compute all subsets of R consistent
with W .

The basic idea is to use new atoms such that the truth assignments to these
atoms correspond to the possible subsets of R. More precisely, let G = {gφ | φ ∈
R} be a set of new variables, not occurring in W or R. Variables from G are
called “guessing variables”, since they are used to guess a certain subset of R.

Consider the following encoding:

ConsG[W ;R] = ∃P
(∧
ψ∈W

ψ ∧
∧
φ∈R

(gφ → φ)
)
,

where P consists of all variables occurring in R or W . Observe that we now have
an open QBF where the guessing variables G are free. The relation between

94 P. Besnard et al.

subsets of R which are consistent with W and models of ConsG[W ;R] is a one-
to-one correspondence, as desired:

Proposition 4. Let W and R be theories, and G = {gφ | φ ∈ R} a set of
variables not occurring in W or R. Moreover, let S ⊆ R and I ⊆ G such that,
for each φ ∈ R, φ ∈ S iff gφ ∈ I.

Then, W ∪ S is consistent iff ConsG[W ;R] is true under I.

Example 1. Consider W = {¬p ∨ ¬q} and R = {p, q}. All proper subsets of R
are consistent with W , but W ∪R is inconsistent. For R as given, we choose

G = {gp, gq}

as corresponding set of guessing variables.
Consider now the encoding ConsG[W ;R], given by

∃pq
(

(¬p ∨ ¬q) ∧ (gp → p) ∧ (gq → q)
)
. (7)

It can be checked that all interpretations I ⊂ G are models of (7), but the
interpretation I = G is not a model of (7). This coincides with the observation
that exactly the proper subsets of R, viz. S1 = ∅, S2 = {p}, and S3 = {q}, are
consistent with W , while S4 = {p, q} is not.

Expressing maximal consistent subsets. We also require to express the maximal
subsets of R which are consistent (with some W). For instance, in the above
example, we should rule out the subset S1 = ∅, since S1 ⊂ S2 (as well as
S1 ⊂ S3) and thus S1 is not maximal.

Formally, a subset S of R is maximal consistent (with W) iff S is consis-
tent (with W) and each S′ with S ⊂ S′ is inconsistent (with W). Due to the
monotonicity of classical propositional logic, the following characterisation is
equivalent:

Proposition 5. Let W and R be theories, and S ⊆ R.
Then, S is maximal consistent with W iff

1. W ∪ S is consistent, and
2. for each φ ∈ (R \ S), W ∪ S ∪ {φ} is inconsistent.

We express these tests as follows: For any theories W and R, let G = {gφ |
φ ∈ R} be a set of variables such that G ∩ var(W ∪R) = ∅. Then, define

ConsGmax[W ;R] = ConsG[W ;R] ∧
∧
φ∈R

(
¬gφ → ¬ConsG\{gφ}[W ∪{φ};R \ {φ}]

)
.

Intuitively, ConsGmax[W ;R] guesses a subset S of R (via atoms G). With the
first conjunct ConsG[W ;R], it is checked whether the guess is consistent with W .
The second conjunct checks maximality for S as follows: For each φ ∈ R, if φ is

Representing Paraconsistent Reasoning via Quantified Propositional Logic 95

contained in the guess (i.e., if gφ is true), we are immediately done. Otherwise,
¬ConsG\{gφ}[W ∪ {φ};R \ {φ}] must evaluate to true. Observe that we use the
same set G in this module (except for removing φ, which itself is “added” to
the first argument W) as in the previous test. Hence, we check whether S is not
consistent with W ∪ {φ}. This coincides precisely with the second condition in
Proposition 5.

The formal result is as follows:

Proposition 6. Let W and R be theories, and G = {gφ | φ ∈ R} a set of
variables not occurring in W or R. Moreover, let S ⊆ R and I ⊆ G such that,
for each φ ∈ R, φ ∈ S iff gφ ∈ I.

Then, S is maximal consistent with W iff ConsGmax[W ;R] is true under I.

Expressing minimal models. Besides the selection of maximal subsets satis-
fying a certain criterion, it is sometimes also necessary to characterise subsets
which are minimal with respect to a specific condition. Indeed, a widely-used
method in nonmonotonic reasoning is inference based on minimal models. In
such an approach, the inference relation is specified not in terms of all models of
a given theory but only in terms of models which are minimal with respect to a
certain ordering. Following the seminal work of McCarthy [46], minimal-model
reasoning can be expressed in terms of a schema of second-order logic, known as
circumscription schema (or circumscription for short). However, in the propo-
sitional case, instances of the circumscription schema are actually nothing else
than specific QBFs. In the following, we characterise models which are minimal
with respect to a specific ordering in terms of a QBF module corresponding to
propositional circumscription.

Let T be a theory and (P,Q,Z) a partition of var(T). Assume two models I
and I ′ of T , and define I ≤P ;Z I

′ iff the following conditions are satisfied:

1. {q ∈ Q | vI(q) = t} = {q ∈ Q | vI′(q) = t};
2. {p ∈ P | vI(p) = t} ⊆ {p ∈ P | vI′(p) = t}.

A model I of T is called (P ;Z)-minimal if no model I ′ of T with I ′ �= I
satisfies I ′ ≤P ;Z I.

Informally, the partition (P,Q,Z) can be interpreted as follows: The set P
contains the variables to be minimised, Z are those variables that can vary in
minimising P , and the remaining variables Q are fixed in minimising P .

For a theory T and a partition (P,Q,Z) of var(T), where P = {p1, . . . , pn}
and Z = {z1, . . . , zm}, we define the QBF Circ[T ;P ;Z], called the (parallel)
circumscription (schema) of P in T , as

T ∧ ∀P̃ ∀Z̃
((
T{P/P̃ , Z/Z̃} ∧

∧
1≤i≤n

(p̃i → pi)
)

→
∧

1≤i≤n
(pi → p̃i)

)
,

where P̃ = {p̃1, . . . , p̃n} and Z̃ = {z̃1, . . . , z̃m} are sets of new variables corre-
sponding to P and Z, respectively, and T{P/P̃ , Z/Z̃} results from T by uniform
substitution of the variables in P̃ ∪ Z̃ for those in P ∪ Z.

Now, the main property of Circ[T ;P ;Z] is given by the following result:

96 P. Besnard et al.

Proposition 7 ([46]). Let T be a theory, (P,Q,Z) a partition of var(T), and
I ⊆ var(T).

Then, I is a (P ;Z)-minimal model of T iff I is a model of Circ[T ;P ;Z].

Derivability testing. Finally, we define further modules for expressing derivabil-
ity. Recall that, for any theory T and any propositional formula ϕ, it holds that
T |= ϕ iff T ∪ {¬ϕ} is inconsistent. We thus define

Deriv [W ;ϕ] = ¬Cons [W ∪ {¬ϕ}]

and obtain the following property:

Proposition 8. For any theory W and any formula ϕ, W |= ϕ iff Deriv [W ;ϕ]
is valid.

More generally, defining

DerivG[W ;R;ϕ] = ¬ConsG[W ∪ {¬ϕ};R]

yields the following characterisation:

Proposition 9. Let W and R be theories, ϕ a formula, and G = {gφ | φ ∈ R}
a set of variables not occurring in W , R, or ϕ. Moreover, let S ⊆ R and I ⊆ G
such that, for each φ ∈ R, φ ∈ S iff gφ ∈ I.

Then, W ∪ S |= ϕ iff DerivG[W ;R;ϕ] is true under I.

3 QBFs for Paraconsistent Reasoning: Case Studies

In this section, we show how QBFs can be successfully used to express different
families of paraconsistent inference relations, exploiting the basic QBF modules
introduced above. We first deal with formalisms based on maximal-consistent
subsets. Afterwards, in Section 3.2, we discuss a class of inference relations using
a consistency-driven rewriting technique based on Reiter’s default logic. Finally,
Section 3.3 is devoted to approaches using minimal-model reasoning in many-
valued logics.

3.1 Reasoning from Maximal-Consistent Subsets

A simple but very popular approach to reasoning from an inconsistent knowl-
edge base is reasoning from consistent subsets [59, 58, 14, 51, 7, 8]. Consider an
inconsistent knowledge base in the form of a theory T :

φ ∧ (ψ → ϕ); (8)
ψ ∧ ¬φ; (9)

(ψ ∧ ϕ) → η; (10)
(ψ ∧ ¬η) ∨ ¬φ; (11)
φ ∨ ψ ∨ ϕ ∨ η. (12)

Representing Paraconsistent Reasoning via Quantified Propositional Logic 97

Clearly, this theory is inconsistent. One way to proceed is to consider the
maximal consistent subsets of T , which are:

S = {(8), (10), (12)};
S′ = {(8), (11), (12)};
S′′ = {(9), (10), (11), (12)}.

Let us see what follows from these maximal consistent subsets of T :

– S entails φ and ψ → (ϕ ∧ η).
– S′ entails φ and ψ ∧ ϕ ∧ ¬η.
– S′′ entails ¬φ and ψ, as well as ϕ → η.

Among the most cautious conclusions are those formulas that follow from the
intersection of S, S′, and S′′:

φ ∨ ψ ∨ ϕ ∨ η.

Definition 4. Let T be a theory. A formula ϕ is a free consequence of T , sym-
bolically T �free ϕ, iff ϕ is entailed by the intersection of all maximal consistent
subsets of T .

In the above example, φ ∨ ψ ∨ ϕ ∨ η ∨ χ is a free consequence of T , for any
formula χ. By contrast, φ ∨ ψ is not a free consequence of T even though φ ∨ ψ
is entailed by S and similarly by S′ as well as by S′′. Thus, free consequences
need not be very informative and other notions have been introduced in the
literature.

According to [20], a systematic account of reasoning from consistent subsets
arises from distinguishing between selection mechanisms (among consistent sub-
sets) and reasoning principles (to be applied to the selected consistent subsets).

In the general case, T is a prioritised theory, which means that it comes in
the form T = T1 ∪ · · · ∪ Tn (possibly, n = 1), where each Ti is a stratum such
that strata with lower index contain formulas of greater importance. We assume
the Ti’s to be disjoint whereas not all authors do so. Here, we use the partition
requirement in order to keep things simple. A subtheory of a prioritised theory T
is of the form S = S1 ∪ · · · ∪Sn such that Si = Ti ∩S for i = 1, . . . , n. Moreover,
the level of a subtheory of T is defined by a(S) = min{i ∈ {1, . . . , n} | Si �= Ti}.

Definition 5. Given T = T1 ∪· · ·∪Tn, we define the orderings �t (“subtheory-
based preference”), �bo (“best-out preference”), and �incl (“inclusion-based
preference”) as follows, where S = S1 ∪ · · · ∪ Sn and S′ = S′

1 ∪ · · · ∪ S′
n range

over the set of all consistent subtheories of T :

– S �t S′ iff S ⊂ S′;
– S �bo S′ iff a(S) < a(S′); and
– S �incl S′ iff there exists some k ∈ {1, . . . , n} such that Sk ⊂ S′

k and
Si = S′

i, for all i ∈ {1, . . . , k − 1}.

98 P. Besnard et al.

Then, a consistent subtheory of T is σ-preferred iff it is maximal with respect
to �σ, where σ ranges over {t,bo, incl}. Also, σ(T) denotes the set of all σ-
preferred subtheories of T .

Considering that all formulas in the above example form the unique stratum
of T , we get that σ(T) = {S, S′, S′′} in all three cases for σ (i.e., t, bo, and
incl). A more interesting situation is T being stratified, e.g., as follows:

T1 = {(8), (9)}; T2 = {(10)}; T3 = {(11), (12)}.

Clearly, introducing strata cannot alter �t, and the t-preferred subtheories
of T are still as above: {S, S′, S′′}. Although �bo depends in general on strata,
it happens here that the bo-preferred subtheories of T are also the same. The
incl-preferred subtheories of T are just S and S′′.

Definition 6. Let T = T1 ∪ · · · ∪ Tn be a prioritised theory, ϕ a propositional
formula, and σ ∈ {t,bo, incl}. Then,

– ϕ is an exi-σ consequence of T , written T �exi-σ ϕ, iff ϕ ∈
⋃
S∈σ(T) Cn(S),

– ϕ is a uni-σ consequence of T , written T �uni-σ ϕ, iff ϕ ∈
⋂
S∈σ(T) Cn(S),

and
– ϕ is an arg-σ consequence of T , written T �arg-σ ϕ, iff ϕ ∈

⋃
S∈σ(T)Cn(S)

but ¬ϕ /∈
⋃
S∈σ(T) Cn(S).

Considering that all formulas in our example form the unique stratum of T ,
we get that φ ∨ ψ is a uni-t consequence of T , whereas ψ ∧ ¬φ is an exi-t
consequence of T because ψ ∧ ¬φ is entailed by S′′ even though it is neither
entailed by S nor S′. However, ψ ∧ ¬φ fails to be an arg-t consequence of T .
A reason is that φ (from which ¬(ψ ∧ ¬φ) is classically deduced) is entailed by
S, and analogously by S′. An example of an arg-t consequence of T is ψ.

Assume now that T is equipped with the stratification given above. uni-
t consequences and uni-bo consequences are the same as in the non-stratified
case. On the other hand, (ψ ∧ ϕ) → η is a new uni-incl consequence. Moreover,
φ ∧ ψ ∧ ¬η is no longer an exi-incl consequence. Accordingly, (ψ ∧ ϕ) → η
is a new arg-incl consequence.

All these notions compare, by way of set-inclusion of the respective sets of
consequences of a given theory, as depicted in Figure 1 (cf. also [20]).

Hence, the free consequences of a given theory T comprise the smallest set of
consequences of T and the set of exi-t consequences is the largest (apart from
the classical consequences Cn(T)).

Other notions have been defined as well, either in the non-prioritised case or
in the prioritised case, most of them technically involved.

The complexity of checking exi-σ, uni-σ, and arg-σ consequences, for σ ∈
{t,bo, incl}, was analysed in [19]. There, the following results were shown: The
problem of deciding whether a formula is an exi-σ consequence of a given theory
is ΣP

2 -complete for σ ∈ {t,bo, incl}. The corresponding problem for uni-t and
uni-incl consequences is ΠP

2 -complete, while for uni-bo it is known to be in
∆P

2 . As for arg-σ, the problem is in ∆P
3 , for each σ ∈ {t,bo, incl}.

Representing Paraconsistent Reasoning via Quantified Propositional Logic 99

EXI-T

EXI-BO

ARG-T ARG-BO

EXI-INCL

ARG-INCL

UNI-INCL

UNI-BOUNI-T

FREE

Fig. 1. Relations between different paraconsistent inference relations based on maximal
subsets

Encodings. From our considerations in Section 2.5, it is quite easy to construct
QBF encodings for expressing exi-t, uni-t, and arg-t consequences. Indeed, it
just suffices to combine the modules ConsGmax[·; ·] and DerivG[·; ·] in a suitable
manner, for a set G of guessing variables. More precisely, given a theory T and a
formula ϕ, we use simultaneously the modules ConsGmax[∅;T] and DerivG[∅;T ;ϕ])
to check whether a guess for a subset S ⊆ T is maximal consistent and whether ϕ
is entailed by S, respectively. Observe that the same set G of guessing variables
is used for expressing both tasks. If there exists at least one interpretation I ⊆ G
making both ConsGmax[∅;T] and DerivG[∅;T ;ϕ]) true, we directly get an encoding
for exi-t consequences. If under each I ⊆ G which is a model of ConsGmax[∅;T],
also DerivG[∅;T ;ϕ]) is true, then we have an encoding for uni-t consequences.

100 P. Besnard et al.

Finally, arg-t consequences are easily encoded via two independent tests for
checking exi-t inference.

Theorem 1. Let T be a theory, ϕ a formula, and G = {gφ | φ ∈ T} a set of
new guessing atoms not occurring in T or ϕ. Then,

1. T �exi-t ϕ iff Texi-t[T ;ϕ] = ∃G
(
ConsGmax[∅;T] ∧ DerivG[∅;T ;ϕ]

)
is valid,

2. T �uni-t ϕ iff Tuni-t[T ;ϕ] = ∀G
(
ConsGmax[∅;T] → DerivG[∅;T ;ϕ]

)
is valid,

and
3. T �arg-t ϕ iff Targ-t[T ;ϕ] = Texi-t[T, ϕ] ∧ ¬Texi-t[T,¬ϕ] is valid.

Observe that the size of each of the above encodings is clearly polynomial
in the size of T and ϕ. Hence, each of the encodings is computable in polyno-
mial time. Furthermore, it is easy to check that Texi-t[T ;ϕ] can be transformed
in polynomial time into a (2,∃)-QBF, whilst Tuni-t[T ;ϕ] can be transformed,
likewise in polynomial time, into a (2,∀)-QBF, for each T and ϕ. Therefore, re-
calling that checking exi-t and uni-t consequence is complete for ΣP

2 and ΠP
2 ,

respectively, both Texi-t[·; ·] and Tuni-t[·; ·] are adequate.
Concerning Targ-t[T ;ϕ], since this encoding can be transformed in polynomial

time into an equivalent QBF which is the conjunction of a (2,∃)-QBF and a
(2,∀)-QBF, for each T and ϕ, it follows that checking arg-t consequence is not
only in ∆P

3 but actually in the easier class DP
2 .

Next, we consider the notion of free consequence. To this end, we call, for a
given theory T , the set of all φ ∈ T which are a uni-t consequence of T the free
base of T .

The following property is also observed in [7].

Proposition 10. Let T be a theory. Then, a formula ϕ is a free consequence of
T iff ϕ is classically entailed by the free base of T .

Note that, by definition, the free base of T is given by T ∩
⋂
S∈t(T) Cn(S).

Hence, Proposition 10 expresses that T �free ϕ just in case T∩
⋂
S∈t(T) Cn(S) |=

ϕ. By the properties of Cn(·), this in turn entails that T �free ϕ only if ϕ ∈⋂
S∈t(T) Cn(S), which rephrases the relation that every free consequence of T is

a uni-t consequence of T , as depicted in Figure 1.

Theorem 2. Let T be a theory, ϕ a formula, and G = {gφ | φ ∈ T} a set of
new guessing variables.

Then, T �free ϕ iff

Tfree[T ;ϕ] = ∀G
(∧
φ∈T

(
Tuni-t[T, φ] → gφ

)
→ DerivG[∅;T ;ϕ]

)

is valid.

We now turn our attention to the other approaches considered, where priori-
tised theories are used to realise a more fine-grained selection mechanism among
consistent subsets. As it turns out, the basic reasoning principles exi-σ, uni-σ,

Representing Paraconsistent Reasoning via Quantified Propositional Logic 101

and arg-σ are encoded along the lines of Theorem 1, but we have to replace the
module ConsGmax[T] in an appropriate way.

We start with the consequence relations based on best-out preference. The
encoding relies on the following proposition.

Proposition 11. Let S = S1 ∪ . . . ∪ Sn be a consistent subset of a prioritised
theory T = T1 ∪ . . . ∪ Tn, with Si = S ∩ Ti.

Then, S is bo-preferred iff T1 ∪ . . . ∪ Ta(S) is inconsistent or S = T .

This motivates the subsequent encoding, which works as follows. First,
ConsG[∅;T] yields all consistent subsets of T via the guessing variables G. By the
above result, we have that T is bo-preferred whenever T is consistent. Hence,
if each gφ ∈ G is assigned to true, we are done. Otherwise, for a guessed subset
S ⊂ T , the encoding checks, for i = 1, . . . , n, that whenever i is the level, a(S),
of S, then T1 ∪ . . . ∪ Ta(S) is inconsistent. Recall that the level of a subtheory S
of T is defined by a(S) = min{j ∈ {1, . . . , n} | Sj �= Tj}.

Lemma 1. Let T = T1∪ . . .∪Tn be a prioritised theory and G = G1∪ . . .∪Gn =
{gφ | φ ∈ T} a set of corresponding guessing variables. Moreover, let S ⊆ T and
I ⊆ G such that, for each φ ∈ T , φ ∈ S iff gφ ∈ I.

Then, S is bo-preferred iff BOG[T], given by

ConsG[∅;T] ∧
(
¬G →

∧
i=1,...,n

(
(G1 ∧ . . .∧Gi−1 ∧ ¬Gi) → ¬Cons [T1∪. . .∪Ti]

))
,

is true under I.

In accord to Theorem 1, we obtain the following encodings for expressing
the relations �exi-bo, �uni-bo, and �arg-bo, respectively, by replacing the module
ConsGmax[∅;T] by BOG[T] in the corresponding translations.

Theorem 3. Let T be a prioritised theory, ϕ a formula, and G = {gφ | φ ∈ T}
a set of new guessing atoms not occurring in T or ϕ. Then,

1. T �exi-bo ϕ iff Texi-bo[T ;ϕ] = ∃G
(
BOG[T] ∧ DerivG[∅;T ;ϕ]

)
is valid,

2. T �uni-bo ϕ iff Tuni-bo[T ;ϕ] = ∀G
(
BOG[T] → DerivG[∅;T ;ϕ]

)
is valid, and

3. T �arg-bo ϕ iff Targ-bo[T ;ϕ] = Texi-bo[T, ϕ] ∧ ¬Texi-bo[T,¬ϕ] is valid.

Similar as for arg-t consequences, the encoding Targ-bo[·; ·] yields that check-
ing arg-bo consequences lies in the easier subclass DP

2 of ∆P
3 . Moreover, al-

though the encoding Texi-bo[·; ·] is adequate, Tuni-bo[·; ·] is not because checking
uni-bo consequences is in ∆P

2 but Tuni-bo[T ;ϕ] can be transformed in polynomial
time into an equivalent (2,∀)-QBF, for any T and ϕ. However, we can simplify
Tuni-bo[·; ·] using the following observation:

Proposition 12. For a prioritised theory T = T1 ∪ . . .∪Tn and a formula ϕ, we
have that T �uni-bo ϕ iff there exists some i ∈ {0, . . . , n} such that T1 ∪ . . . ∪ Ti
is consistent and T1 ∪ . . . ∪ Ti |= ϕ.

102 P. Besnard et al.

Observe that the case i = 0 is required for dealing with the case where T1
is already inconsistent. We thus obtain the following optimised encoding for
checking uni-bo consequences, avoiding explicit quantifier alternations:

Theorem 4. Let T = T1 ∪ . . . ∪ Tn be a prioritised theory, and ϕ a formula.
Then, T �uni-bo ϕ iff

∨
i=0,...,n

(
Cons [T1 ∪ . . . ∪ Ti] ∧ Deriv [T1 ∪ . . . ∪ Ti;ϕ]

)
is valid.

Finally, we define a module for expressing the incl-preferred subsets of a
given prioritised theory. The following result is the basis for this module, albeit
other characterisations are also possible.

Proposition 13. Given a consistent subtheory S = S1 ∪ . . .∪Sn of a prioritised
theory T = T1 ∪ . . . ∪ Tn, it holds that S is incl-preferred iff, for each i ∈
{1, . . . , n} and each φ ∈ Ti \ S, S1 ∪ . . . ∪ Si ∪ {φ} is inconsistent.

This leads to the following encoding:

Lemma 2. Let T = T1∪ . . .∪Tn be a prioritised theory and G = G1∪ . . .∪Gn =
{gφ | φ ∈ T} a set of corresponding guessing atoms. Moreover, let S ⊆ T and
I ⊆ G such that, for each φ ∈ T , φ ∈ S iff gφ ∈ I.

Then, S is incl-preferred iff

InclG[T] = ConsG[∅;T] ∧
∧

i=1,...,n,φ∈Ti

(
¬gφ → ¬ConsG

i
φ [{φ}, T iφ]

)

is true under I, where Giφ = (G1 ∪ . . .∪Gi)\{gφ} and T iφ = (T1 ∪ . . .∪Ti)\{φ}.

Again, the encodings for checking exi-incl, uni-incl, and arg-incl conse-
quences, respectively, follow the same pattern as for the previous variants.

Theorem 5. Let T be a prioritised theory, ϕ a formula, and G = {gφ | φ ∈ T}
a set of new guessing atoms not occurring in T or ϕ. Then,

1. T �exi-incl ϕ iff Texi-incl[T ;ϕ] = ∃G
(
InclG[T] ∧ DerivG[∅;T ;ϕ]

)
is valid,

2. T �uni-incl ϕ iff Tuni-incl[T ;ϕ] = ∀G
(
InclG[T] → DerivG[∅;T ;ϕ]

)
is valid,

and
3. T �arg-incl ϕ iff Targ-incl[T ;ϕ] = Texi-incl[T ;ϕ] ∧ ¬Texi-incl[T ; ¬ϕ] is valid.

Analogous to the previous encodings we have that Texi-incl[·; ·] and Tuni-incl[·; ·]
are adequate, whilst Targ-incl[·; ·] exhibits that checking arg-incl consequences
lies actually in DP

2 .

3.2 Signed Systems

The basic idea behind the approach taken by signed systems [11] is as follows.
An inconsistent theory is transformed into a consistent one by renaming all
literals occurring in the theory. Then, some of the original contents of the theory
is restored by introducing progressively formal equivalences linking the original

Representing Paraconsistent Reasoning via Quantified Propositional Logic 103

literals to their renamings. This is done as long as consistency is preserved.
The overall approach provides us with a family of paraconsistent consequence
relations.

For illustration, consider a theory containing the four statements

p, ¬p, q, (¬q ∨ r). (13)

Clearly, this theory is inconsistent. We start with transforming the theory by
renaming all of its literals:

p+, p−, q+, (q− ∨ r+).

The renamings indicate what renamed literals were denials of each other—
making explicit whether the renamed literals were “positive” or “negative”. In
this way, we obtain a signed theory. Then, we restore some of the original con-
tents of the theory by progressively introducing formal equivalences of the form
p+ ≡ ¬p−, linking the original literals to their renamings. We do this up to the
point where introducing any further equivalence would reinstate inconsistency.
As a result, we can apply classical logic to reason from this signed theory ex-
tended with increasingly many equivalences (actually, the equivalences we use
are slightly different because we deal at once with the signed and unsigned lan-
guage). Then, a later interpretation of the signed formulas gets us back to the
original language, classical inferences having thus been turned into seemingly
paraconsistent ones.

The primary technical means for dealing with “signed theories” is default
logic [57], whose central concepts are default rules along with their induced
extensions of an initial set of premises. A default rule (or default for short)
α : β
γ has two types of antecedents: a prerequisite α which is established if α is

derivable and a justification β which is established if β is consistent. If both
conditions hold, the consequent γ is concluded by default. For convenience, we
denote the prerequisite of a default δ by prereq(δ), its justification by justif(δ),
and its consequent by conseq(δ). Accordingly, for a set D of defaults, we de-
fine prereq(D) = {prereq(δ) | δ ∈ D}, justif(D) = {justif(δ) | δ ∈ D}, and
conseq(D) = {conseq(δ) | δ ∈ D}.

A default theory is a pair (D,T) where D is a set of default rules and T is a
set of propositional formulas. A set E of formulas is an extension of (D,T) iff
E =

⋃
n∈ω En, where E1 = T and, for n ≥ 1, En+1 = Cn(En) ∪ {γ | α : β

γ ∈
D,α ∈ En,¬β �∈ E}. We refer the reader for further details on default logic to
the literature [57, 9].

The formal approach behind signed systems can then be described as follows.
We start with a finite set of propositional formulas (i.e., a theory) T . Then, we
proceed as follows. First, we transform T into conjunctive normal form (CNF).3

This is a conjunction of disjunctions of literals, or simply a set of clauses. In this

3 Such a transformation is not strictly necessary; see [11] on how this is avoided by
distinguishing among positive and negative formula occurrences.

104 P. Besnard et al.

way, T is transformed into a finite set of clauses. It is worth noticing that this
transformation does not affect the logical contents of the original theory.

Next, we rename the propositions in T as follows. Let ϕ be a formula in CNF.
Then, we define ϕ± as the formula obtained from ϕ by replacing each occurrence
of ¬p by p− and by replacing all remaining occurrences of p by p+. In this way,
we turn the initial theory T into the consistent theory T± = {φ± | φ ∈ T}. This
is so because each formula φ of T is substituted by a formula φ± which is always
a positive formula.

Finally, we consider the default theory comprised of T± and a set of default
rules DP = {δp | p ∈ P}, where P is a suitably chosen set of propositional atoms
and

δp =
: p+ ≡ ¬p−

(p ≡ p+) ∧ (¬p ≡ p−)
, (14)

for each p ∈ P . Intuitively, such default rules provide means for closing
the gap between T± and T . That is, by checking whether the justification
p+ ≡ ¬p− is consistent, we test whether or not we can reintroduce the “law
of (non-)contradiction” for the proposition p without getting an inconsistent
theory. If this is the case, we “restore” the original meaning of the propositions
p+ and p− by adding the equivalences p ≡ p+ and ¬p ≡ p−. Considering in turn
each propositional letter p, we are thus gradually restoring the original contents
of the theory—except that we stop at the borderline of inconsistency by leaving
blank all propositions involved in genuine contradictions.

Consider the theory
{p,¬p, q, (q → r)}. (15)

Transforming the elements of this theory into CNF yields the theory given
in (13), i.e., {p,¬p, q, (¬q ∨ r)}. Next, we rewrite this set of clauses into the
consistent theory

{p+, p−, q+, (q− ∨ r+)} (16)

by substituting ¬p,¬q by p−, q− and p, q, r by p+, q+, r+, respectively.
We then proceed by adding, for each propositional atom occurring in the

original theory, a corresponding default rule as defined in (14). This yields three
default rules δp, δq, and δr, since the original theory is built from the proposi-
tional atoms p, q, and r. In full detail, δp, δq, δr have the following form:

: p+ ≡ ¬p−

(p ≡ p+) ∧ (¬p ≡ p−)
,

: q+ ≡ ¬q−

(q ≡ q+) ∧ (¬q ≡ q−)
,

: r+ ≡ ¬r−

(r ≡ r+) ∧ (¬r ≡ r−)
.

Consider the default theory obtained from theory (16) along with the three
latter default rules:

(
{δp, δq, δr}, {p+, p−, q+, (q− ∨ r+)}

)
. (17)

Clearly, the first default rule is inapplicable, since its justification p+ ≡ ¬p−

is inconsistent in the presence of p+ and p−. In contrast, the second and the
third default rule are applicable and consequently restore the original meaning

Representing Paraconsistent Reasoning via Quantified Propositional Logic 105

of q+, q−, r+ , and r−.4 Accordingly, we obtain a single extension containing the
propositions q and r (from the alphabet of our inconsistent initial theory) along
with p+, p−, q+, r+.

Using this definition, we define the first family of paraconsistent consequence
relations based on signed theories:

Definition 7. Let T be a theory, ϕ a propositional formula, and E the set of
all extensions of (DP , T

±). Moreover, for each set S of formulas and signed
formulas, let ΠS = {conseq(δp) | p ∈ P,¬justif(δp) �∈ S}. Then,

– ϕ is a credulous unsigned5 consequence of T , symbolically written as T �c ϕ,
iff ϕ ∈

⋃
E∈E Cn(T± ∪ΠE),

– ϕ is a skeptical unsigned consequence of T , symbolically written as T �s ϕ,
iff ϕ ∈

⋂
E∈E Cn(T± ∪ΠE), and

– ϕ is a prudent unsigned consequence of T , symbolically written as T �p ϕ,
iff ϕ ∈ Cn(T± ∪

⋂
E∈E ΠE).

For illustration, consider the inconsistent theory T = {p, q,¬p∨ ¬q}. For ob-
taining the above paraconsistent consequence relations, T is turned into the de-
fault theory (DP , T

±) =
(
{δp, δq}, {p+, q+, p− ∨q−}

)
. We obtain two extensions,

viz. Cn(T± ∪ {conseq(δp)}) and Cn(T± ∪ {conseq(δq)}). The following relations
show how the different consequence relations behave: on the one hand, we have
T �c p, T ��s p, and T ��p p, but, on the other hand, for instance, it holds that
T �c p ∨ q, T �s p ∨ q, and T ��p p ∨ q.

For a complement, the following “signed” counterparts are defined.

Definition 8. Given the prerequisites of Definition 7, we say that

– ϕ is a credulous signed consequence of T , symbolically written as T �±
c ϕ,

iff ϕ± ∈
⋃
E∈E Cn(T± ∪ΠE),

– ϕ is a skeptical signed consequence of T , symbolically written as T �±
s ϕ,

iff ϕ± ∈
⋂
E∈E Cn(T± ∪ΠE), and

– ϕ is a prudent signed consequence of T , symbolically written as T �±
p ϕ, iff

ϕ± ∈ Cn(T± ∪
⋂
E∈E ΠE).

As shown in [11], these relations compare to each other in the following way:

Proposition 14. Let Ci(T) = {ϕ | T �i ϕ} and similarly C±
i (T) = {ϕ | T �±

i

ϕ}, for i ∈ {p, s, c}. Then, we have

1. Ci(T) ⊆ C±
i (T), and

4 Notice that the contribution of a default rule like δr to the theory formation process is
in no way sufficient for deriving r, even though it is a necessary condition. Applying δr

merely re-establishes the original meaning of r and ¬r from r+ and r−, respectively.
In our example, r is derived from q and ¬q ∨ r due to the preceding restoration of q
and r.

5 The term “unsigned” indicates that only unsigned formulas are taken into account.

106 P. Besnard et al.

2. Cp(T) ⊆ Cs(T) ⊆ Cc(T) and C±
p (T) ⊆ C±

s (T) ⊆ C±
c (T).

That is, signed derivability gives more conclusions than unsigned derivability,
and within each series of consequence relations the strength of the relation is
increasing. For a detailed formal elaboration, along with further refined conse-
quence relations, we refer the reader to [11].

Encodings. In [12], it was shown that, given a theory T , the outcome of the
different paraconsistent consequence relations solely depends on those defaults
δp from DP where p occurs in T . With a slight abuse of notation, in what follows
we write DT to denote this particular set of defaults for a given T .

The next result is of importance, since it leads us to a simple appealing
encoding to compute the extensions of the kind of default theories under con-
sideration.

Proposition 15. Let T be a theory, (DT , T
±) its corresponding default theory,

and C ⊆ DT .
Then, Cn(T± ∪ conseq(C)) is an extension of (DT , T

±) iff justif(C) is max-
imal consistent with T±.

Reconsider our example theory T = {p,¬p, q,¬q ∨ r} and its corresponding
default theory (17), having justif(DT) = {p+ ≡ ¬p−, q+ ≡ ¬q−, r+ ≡ ¬r−, }.
It is quite easy to see that T± = {p+, p−, q+, q− ∨ r+} is not consistent with
p+ ≡ ¬p−, but with {q+ ≡ ¬q−, r+ ≡ ¬r−}. Thus, justif({δq, δr}) is the maximal
subset of justif(D) consistent with T . We thus get as single extension the deduc-
tive closure of T± ∪conseq({δq, δr}) = T± ∪{q ≡ q+,¬q ≡ q−, r ≡ r+,¬r ≡ r−}
yielding Cn(p+, p−, q+, q, r+, r).

Indeed, Theorem 15 gives us a suitable basis for the desired QBF-encodings
which represent a more compact axiomatics than the encodings given in [27] for
arbitrary default theories.

Theorem 6. Let T be a theory, (DT , T
±) its corresponding default theory, and

G = {gδ | δ ∈ DT } a set of new guessing variables. Moreover, let C ⊆ DT and
I ⊆ G such that, for each δ ∈ DT , δ ∈ C iff gδ ∈ I.

Then, the set Cn(T± ∪ conseq(C)) is an extension of (DT , T
±) iff the QBF

ConsGmax[T±; justif(DT)] is true under I.

Having a characterisation of the extensions in terms of models of QBFs,
it is quite easy to decide the respective paraconsistent consequence relations.
In particular, encodings for the relations �c, �±

c , �s, and �±
s are obtained by

combining, in a suitable way, the above encoding with the module for expressing
derivability.

Theorem 7. Let T be a theory, ϕ a formula, and (DT , T
±) as before. Moreover,

let G = {gδ | δ ∈ DT } be a set of guessing variables. Then,

1. T �c ϕ iff

Tc [T ;ϕ] = ∃G
(
ConsGmax[T±; justif(DT)] ∧ DerivG[T±; conseq(DT);ϕ]

)

is valid,

Representing Paraconsistent Reasoning via Quantified Propositional Logic 107

2. T �s ϕ iff

Ts [T ;ϕ] = ∀G
(
ConsGmax[T±; justif(DT)] → DerivG[T±; conseq(DT);ϕ]

)

is valid,
3. T �±

c ϕ iff T ±
c [T ;ϕ] = Tc [T ;ϕ±] is valid, and

4. T �±
s ϕ iff T ±

s [T ;ϕ] = Ts [T ;ϕ±] is valid.

Observe that the sets DT , justif(DT), and conseq(DT) have the same cardi-
nality. Hence, in the above result, one set of guessing variables, G, is sufficient.

It remains to deal with the prudent consequence relations. To begin with, as
pointed out in [11], the inference relation �p captures the notion of free conse-
quence. Hence, Tfree[·; ·] can be used as encoding for �p. However, for a more
direct encoding of prudent consequence, we can show the following property:

Lemma 3. Let T be a theory, (DT , T
±) its corresponding default theory, and ϕ

a formula.
Then, the following conditions are equivalent:

1. T �p ϕ;
2. for each C ⊆ DT , if, for each δ ∈ DT , T �s conseq(δ) only if δ ∈ C, then

T± ∪ conseq(C) |= ϕ.

This leads to the following encoding:

Theorem 8. Let T be a theory, (DT , T
±) its corresponding default theory, ϕ a

formula, and G = {gδ | δ ∈ DT } a set of new guessing variables.
Then, T �p ϕ iff

∀G
(∧
δ∈DT

(
Ts [T±; conseq(δ)] → gδ

)
→ DerivG[T±; conseq(DT);ϕ]

)

is valid.

An encoding for T �±
p ϕ is easily obtained by replacing ϕ by ϕ± in the above

encoding.
Similar to the paraconsistent inference relations based on maximal subsets,

the complexity of the signed and unsigned inference relations is located at the
second level of the polynomial hierarchy. This was shown in [12] on the basis of
the above encodings, by inspecting the quantifier order of the resultant QBFs.6

As well, the respective encodings are adequate.

3.3 Multi-Valued Approaches

The idea underlying the three-valued approaches to paraconsistent reasoning is
to counterbalance the effect of contradictions by providing a third truth value,

6 Incidentally, the complexity results for �s and �±
s have independently been obtained

by Coste-Marquis and Marquis as well [22].

108 P. Besnard et al.

accounting for contradictory propositions. As already put forth in [55], this pro-
vides us with inconsistency-tolerating three-valued models. However, this ap-
proach turns out to be rather weak in that it invalidates certain classical in-
ferences, even if there is no contradiction. Intuitively, this is because there are
too many three-valued models, in particular those assigning the inconsistency-
tolerating truth-value to propositions that are unaffected by contradictions. For
instance, the three-valued logic LP [55] denies inference by disjunctive syllogism.
That is, ψ is not derivable from the (consistent!) premise (φ∨ψ)∧¬φ. As pointed
out in [22], this deficiency applies also to the closely related paraconsistent sys-
tems J3 [26], L [44], and RP [33]. As a consequence, none of the aforementioned
systems coincides with classical logic when reasoning from consistent premises.

The pioneering work to overcome this deficiency was done by Priest [56].
The key idea is to restrict the set of three-valued models by taking advantage of
some preference criterion that aims at “minimising inconsistency”. In this way,
a “maximum” of a classically inconsistent knowledge base should be recovered.
While minimisation is understood in Priest’s seminal work [56], proposing his
logic LPm, as preferring three-valued models as close as possible to two-valued
interpretations, the overall approach leaves room for different preference criteria.
Another criterion is postulated in [10] by giving more importance to the given
knowledge base. In this approach, one prefers three-valued models that are as
similar as possible to two-valued models of the knowledge base in the sense that
those models assign true to as many items of the knowledge base as possible.
Furthermore, [40] considers cardinality-based versions of the last two preference
criteria. Even more criteria are conceivable by distinguishing symbols having
different importance.

Syntactically, we use propositional formulas in the standard way, but adopt
the semantics as follows. A three-valued interpretation, M , is a function assigning
to each atom a truth-value from {t, f, o}. Intuitively, the truth value o takes
care for contradictory propositions. In general, the assignment of truth values to
arbitrary formulas, given a three-valued interpretation M , is realised by means
of a function vM (·), which is specified according to the following truth tables,
under the usual condition that vM (p) = M(p), for any atom p:

⊥
f

�
t

¬
t f
f t
o o

∧ t f o

t t f o
f f f f
o o f o

∨ t f o

t t t t
f t f o
o t o o

→ t f o

t t f o
f t t t
o t f o

(18)

We sometimes leave an interpretation M implicit and simply write φ : x
instead of vM (φ) = x, for x ∈ {t, f, o}. Also, with a slight abuse of notation,
an interpretation may be specified as a finite set of expressions of form p : x,
where p is an atom and x is as before, containing only the relevant elements and
omitting the implicit part.

A three-valued model of a formula φ is an interpretation that assigns either t or
o to φ. Modelhood extends to sets of formulas in the standard way. Accordingly,
given a set T of formulas and a formula φ, we define T |= φ if each model of T is a

Representing Paraconsistent Reasoning via Quantified Propositional Logic 109

model of φ. Whenever necessary, we write |=3 and |=2 to distinguish three-valued
from two-valued entailment.

Note that the truth value of φ → ψ differs from that of ¬φ∨ψ only in the case
of a three valued interpretation M with vM (φ) = o and vM (ψ) = f , resulting
in vM (φ → ψ) = f and vM (¬φ ∨ ψ) = o. This difference is prompted by the
fact that t and o indicate modelhood, which motivates the assignment of the
same truth values to φ → ψ no matter whether we have φ : t or φ : o. This
has actually to do with the difference between modus ponens and disjunctive
syllogism: The latter yields ψ from φ ∧ ¬φ ∧ ¬ψ because φ ∨ ψ follows from φ.
The overall inference seems wrong because, in the presence of φ ∧ ¬φ, φ ∨ ψ is
satisfied (by φ : o) with no need for ψ to be t. As pointed out in [40], one may
actually view the connective → as

“the ‘right’ generalisation of classical implication because → is the in-
ternal implication connective [5] for the defined inference relation in the
sense that a deduction (meta)theorem holds for it: T ∪ {φ} |=3 ψ iff
T |=3 φ → ψ.”

On the other hand, a formula composed of the connectives ¬,∨, and ∧ can
never be inconsistent; that is, each such formula has at least one three-valued
model [18]. Finally, we mention that the entailment problem for |=3 is co-NP-
complete, no matter whether → is included or not [50, 18, 22].

As mentioned previously, Priest’s logic LPm [56] was conceived to overcome
the failure of disjunctive syllogism in LP [55]. LP amounts to the three-valued
logic obtained by restricting the language to formulas in which only the con-
nectives ¬,∨, and ∧ are permitted (and defining φ → ψ as ¬φ ∨ ψ). In LPm,
modelhood is then limited to models containing a minimal number of proposi-
tional variables being assigned o. This allows for drawing

“all classical inferences except where inconsistency makes them doubtful
anyway” [56].

Formally, the consequence relation of LPm can be defined as follows.

Definition 9. For three-valued interpretations M and N , define the partial or-
dering M ≤m N iff, for each atom p, vM (p) = o implies vN (p) = o. Then,
T |=m ϕ iff every three-valued model of T that is minimal with respect to ≤m is
a three-valued model of ϕ.

Unlike this, the approach of Besnard and Schaub [10] prefers three-valued
models that assign the truth value t to as many items of the knowledge base T
as possible:

Definition 10. For three-valued interpretations M and N , define the partial
ordering M ≤n N iff {φ ∈ T | vM (φ) = o} ⊆ {φ ∈ T | vN (φ) = o} . Then,
T |=n ϕ iff every three-valued model of T that is minimal with respect to ≤n is
a three-valued model of ϕ.

110 P. Besnard et al.

The major difference between the two approaches defined above is that the
restriction of modelhood in LPm focuses on models as close as possible to two-
valued interpretations, whilst the approach of Definition 10 aims at models next
to two-valued models of the considered premises. According to [10], the effects
of making the formula select its preferred models can be seen by looking at
T = {p,¬p, (¬p ∨ q)}: While LPm yields two ≤m-preferred models, {p : o, q : t}
and {p : o, q : f}, from which one obtains p∧¬p, the second approach yields q as
additional conclusion. In fact, {p : o, q : t} is the only ≤n-preferred model of the
premises {p,¬p, (¬p∨q)}; it assigns t to (¬p∨q), while this premise is attributed
o by the second ≤m-preferred model {p : o, q : f}. Hence, the latter is not ≤n-
preferred. So, while T �|=m q and T |=n q, we note that T ∪ {(p ∨ ¬q)} �|=l q
for l = m,n. On the other hand, |=n is clearly more syntax-dependent than
|=m since the items within the knowledge base are used for distinguishing ≤n-
preferred models.

In fact, both inference relations |=m and |=n amount to their classical (two-
valued) counterpart, whenever the set of premises is classically consistent. Also,
it is shown in [22] that deciding entailment for |=m and |=n is ΠP

2 -complete, no
matter whether → is included or not. A logical analysis of both relations can be
found in [40] and in the original literature [56, 10].

Encodings. We start with an encoding of the underlying three-valued logic in-
troduced above by means of classical propositional logic.

To this end, we introduce, for each atom p, a globally new atom p′ and define
P ′ = {p′ | p ∈ P} for a given set P of atoms.

Let M be a three-valued interpretation over a set P of atoms. We define the
associated two-valued interpretation, aM2 , over P ∪ P ′ by setting

aM2 (p) = aM2 (p′) = t if M(p) = t,
aM2 (p) = aM2 (p′) = f if M(p) = f, and

aM2 (p) = f and aM2 (p′) = t if M(p) = o,

for any atom p ∈ P . Conversely, for a given two-valued interpretation I ⊆ P ∪P ′

satisfying vI(p → p′) = t, for any p ∈ P , we define the associated three-valued
interpretation, aI3, by setting

aI3(p) =
{
I(p) if I(p) = I(p′),
o if I(p) = f and I(p′) = t,

for any p ∈ P .
Moreover, we need the following parameterised translation:

Definition 11. For any atom p and any propositional formula φ and ψ, we
define

1. (a) τ [p; t] = p,
(b) τ [p; f] = ¬p′,
(c) τ [p; o] = ¬p ∧ p′,

2. (a) τ [¬φ; t] = τ [φ; f],

Representing Paraconsistent Reasoning via Quantified Propositional Logic 111

(b) τ [¬φ; f] = τ [φ; t],
(c) τ [¬φ; o] = τ [φ; o],

3. (a) τ [φ ∧ ψ; t] = τ [φ; t] ∧ τ [ψ; t],
(b) τ [φ ∧ ψ; f] = τ [φ; f] ∨ τ [ψ; f],
(c) τ [φ ∧ ψ; o] = ¬τ [φ ∧ ψ; f] ∧ ¬τ [φ ∧ ψ; t],

4. (a) τ [φ ∨ ψ; t] = τ [φ; t] ∨ τ [ψ; t],
(b) τ [φ ∨ ψ; f] = τ [φ; f] ∧ τ [ψ; f],
(c) τ [φ ∨ ψ; o] = ¬τ [φ ∨ ψ; t] ∧ ¬τ [φ ∨ ψ; f],

5. (a) τ [φ → ψ; t] = τ [φ; f] ∨ τ [ψ; t],
(b) τ [φ → ψ; f] = ¬τ [φ; f] ∧ τ [ψ; f],
(c) τ [φ → ψ; o] = ¬τ [φ; f] ∧ τ [ψ; o].

For computing the three-valued models of a set T of formulas, we use

N [T] =
∧
φ∈T

¬τ [φ; f].

For example, consider T = {p,¬p, (¬p ∨ q)}. We get:

N [T] = ¬τ [p; f] ∧ ¬τ [¬p; f] ∧ ¬τ [(¬p ∨ q); f]
= ¬¬p′ ∧ ¬τ [p; t] ∧ ¬(τ [¬p; f] ∧ τ [q; f])
= ¬¬p′ ∧ ¬p ∧ ¬(τ [p; t] ∧ ¬q′)
= ¬¬p′ ∧ ¬p ∧ ¬(p ∧ ¬q′).

Now, the latter formula is equivalent to p′ ∧ ¬p ∧ (¬p ∨ q′), which is in
turn equivalent to p′ ∧ ¬p by absorption. Hence, N [T] possesses four two-valued
models (over {p, p′, q, q′}), viz.

I1 = {p′}, I2 = {p′, q}, I3 = {p′, q′}, and I4 = {p′, q, q′}.

In order to establish a correspondence among the four two-models of N [T]
and the three three-valued models of T , assigning o to p and varying on q, the
relation between the underlying sets of atoms P = {p, q} and P ′ = {p′, q′}
must be fixed. In fact, this is accomplished by adding r → r′ for every r ∈ P .
Observe that in the above example, I2 does not have a corresponding three-
valued interpretation.

In this way, we obtain the following result.

Theorem 9. Let ϕ be a formula with P = var(ϕ), let P ′ = {p′ | p ∈ P}, and
let x ∈ {t, f, o}.

Then, the following conditions hold:

1. For any three-valued interpretation M over P , if vM (ϕ) = x, then∧
p∈P (p → p′) ∧ τ [ϕ;x] is true under aM2 , the associated two-valued in-

terpretation of M .
2. For any two-valued interpretation I over P ∪ P ′, if

∧
p∈P (p → p′) ∧ τ [ϕ;x]

is true under I, then vaI
3
(ϕ) = x, where aI3 is the associated three-valued

interpretation of I.

112 P. Besnard et al.

Since the formula τ [ϕ; t] ∨ τ [ϕ; f] ∨ τ [ϕ; o] is clearly a tautology of classical
logic, we immediately get the following relation between the three-valued models
of a theory and the two-valued models of the corresponding encoding:

Corollary 1. Let T be a theory with P = var(T), and let P ′ = {p′ | p ∈ P}.
Then, there is a one-to-one correspondence between the three-valued models

of T and the two-valued models of the formula
∧
p∈P

(p → p′) ∧ N [T], (19)

with N [T] =
∧
φ∈T ¬τ [φ; f].

In particular, the three-valued model of T corresponding to a two-valued model
I of (19) is given by the associated three-valued interpretation aI3 of I.

For illustration, consider T = {p,¬p, (¬p ∨ q)} along with

(p → p′) ∧ (q → q′) ∧ N [T],

which is equivalent to

(p → p′) ∧ (q → q′) ∧ (p′ ∧ ¬p).

Unlike above, we obtain now as two-valued models I1, I3, and I4 being in
a one-to-one correspondence with the three three-valued models, {p : o, q : t},
{p : o, q : o}, and {p : o, q : f}, of T , respectively.

Before dealing with the reductions for the inference relations |=m and |=n,
it is instructive to see that the results developed so far already allow for a
straightforward encoding of three-valued entailment, and, in particular, inference
in logic LP [55]:

Theorem 10. Let T be a theory with var(T) = P , and let ϕ be a formula.
Then, T |=3 ϕ iff Deriv [

∧
p∈P (p → p′) ∧ N [T]; ¬τ [ϕ; f]] is valid.

To be precise, we obtain (original) inference in LP [55] when restricting T
and ϕ to formulas whose connectives are among ¬, ∧, and ∨ only.

Let us now turn to Priest’s logic LPm [56]. For this, we must, roughly speak-
ing, enhance the encoding of LP in order to account for the principle of “min-
imising inconsistency” used in LPm. This is accomplished by means of the QBF
module expressing propositional circumscription, as defined in Section 2.5.

Theorem 11. Let T be a theory with P = var(T), and let ϕ be a propositional
formula. Furthermore, let G = {gp | p ∈ var(T)} be a set of new variables, and
let Q = P ∪ P ′ ∪G ∪ var(ϕ).

Then, T |=m ϕ iff

∀Q
(
Circ[(

∧
p∈P

(
(p → p′) ∧ (gp ≡ τ [p; o])

)
∧ N [T];G;P ∪ P ′] → ¬τ [ϕ; f]

)

is valid.

Representing Paraconsistent Reasoning via Quantified Propositional Logic 113

To be precise, we obtain (original) inference in LPm [56] when restricting T
and ϕ to formulas whose connectives are among ¬, ∧, and ∨ only.

We obtain an axiomatisation of Besnard and Schaub’s approach [10] in a
completely analogous fashion:

Theorem 12. Let T , P , and ϕ be as in Theorem 11, let G = {gφ | φ ∈ T} be a
set of new guessing variables, and let Q = P ∪ P ′ ∪G ∪ var(ϕ).

Then, T |=n ϕ iff

∀Q
(
Circ[(

∧
p∈P (p → p′) ∧

∧
φ∈T (gφ ≡ τ [φ; o]) ∧ N [T];G;P ∪ P ′] → ¬τ [ϕ; f]

)

is valid.

It is a straightforward matter to check that the encodings given in the above
theorems are adequate with respect to checking the corresponding inference re-
lations. We also mention that alternative translations of the considered three-
valued paraconsistent logics into QBFs are given in [13], based on different QBF
modules for expressing the minimisation principles employed in the relations
|=m and |=n, respectively. Furthermore, although we do not detail it here, we
stress that other multi-valued paraconsistent logics can analogously be treated in
terms of reductions to QBFs. As a case in point, similar to the characterisations
given in Theorems 11 and 12, [3] describes in effect axiomatisations of various
four-valued paraconsistent logics into two-valued quantified propositional logic
based on specific forms of propositional circumscription.

4 Conclusion

In this chapter, we discussed how differing approaches to paraconsistent reason-
ing can be expressed in a uniform framework by means of quantified propositional
logic. We have started by introducing basic formulas that are used as building
blocks for modeling advanced reasoning tasks. To a turn, we have demonstrated,
by means of three case-studies, how specific paraconsistent inference problems
can be mapped onto decision problems of QBFs.

The overall approach has several benefits. To begin with, it allows us to com-
pare distinct approaches by looking at their axiomatisation as QBFs. Moreover,
this axiomatisation provides an executable specification that can be given to
existing QBF-solvers. In view of the considerable sophistication offered nowa-
days by these solvers, we obtain prototypical implementations with a relatively
efficient performance.

The idea of encoding paraconsistent formalisms by means of QBFs is also
investigated in [2]; interestingly, this approach uses signed formulas, as described
in Section 3.2, for expressing inferences while preferences are expressed by QBFs.
The idea of signed systems has recently been applied to database repair [4]. In
this context, it is an interesting question in how far approaches to database
repair and consistent query answering using annotated logics [1] (as a form of
multi-valued logics) can be encoded by means of QBFs.

114 P. Besnard et al.

References

1. M. Arenas, L. Bertossi, and J. Chomicki. Consistent query answers in inconsistent
databases. In Proceedings of the Eighteenth ACM SIGACT-SIGMOD-SIGART
Symposium on Principles of Database Systems (PODS ’99), pages 68–79. ACM
Press, 1999.

2. O. Arieli. Paraconsistent preferential reasoning by signed quantified Boolean for-
mulae. In Proceedings of the 16th European Conference on Artificial Intelligence
(ECAI 2004), 2004. To appear.

3. O. Arieli and M. Denecker. Reducing preferential paraconsistent reasoning to
classical entailment. Journal of Logic and Computation, 13(4):557–580, 2003.

4. O. Arieli, M. Denecker, B. V. Nuffelen, and M. Bruynooghe. Database repair
by signed formulae. In Proceedings of the Third Conference on Foundations of
Information and Knowledge Systems (FoIKS ’04), volume 2942 of Lecture Notes
in Computer Science, pages 14–30. Springer-Verlag, 2004.

5. A. Avron. Simple consequence relations. Information and Computation, 92:105–
139, 1991.

6. A. Ayari and D. Basin. QUBOS: Deciding quantified Boolean logic using proposi-
tional satisfiability solvers. In M. Aagaard and J. O’Leary, editors, Proceedings of
the Fourth International Conference on Formal Methods in Computer-Aided De-
sign (FMCAD 2002), volume 2517 of Lecture Notes in Computer Science, pages
187–201. Springer-Verlag, 2002.

7. S. Benferhat, D. Dubois, and H. Prade. Argumentative inference in uncertain and
inconsistent knowledge bases. In Proceedings of the Ninth Conference on Uncer-
tainty in Artificial Intelligence (UAI ’93), pages 411–419, 1993.

8. S. Benferhat, D. Dubois, and H. Prade. Some syntactic approaches to the handling
of inconsistent knowledge bases: A comparative study. Part 1: The flat case. Studia
Logica, 58(1):17–45, 1997.

9. P. Besnard. An Introduction to Default Logic. Springer-Verlag, 1989.
10. P. Besnard and T. Schaub. Circumscribing inconsistency. In Proceedings of the

15th International Joint Conference on Artificial Intelligence (IJCAI ’97), pages
150–155. Morgan Kaufmann Publishers, 1997.

11. P. Besnard and T. Schaub. Signed systems for paraconsistent reasoning. Journal
of Automated Reasoning, 20:191–213, 1998.

12. P. Besnard, T. Schaub, H. Tompits, and S. Woltran. Paraconsistent reasoning via
quantified Boolean formulas, I: Axiomatising signed systems. In S. Flesca, S. Greco,
N. Leone, and G. Ianni, editors, Proceedings of the Eighth European Conference
on Logics in Artificial Intelligence (JELIA ’02), volume 2424 of Lecture Notes in
Computer Science, pages 320–331. Springer-Verlag, 2002.

13. P. Besnard, T. Schaub, H. Tompits, and S. Woltran. Paraconsistent reasoning via
quantified Boolean formulas, II: Circumscribing inconsistent theories. In Proceed-
ings of the Seventh European Conference on Symbolic and Quantitative Approaches
to Reasoning with Uncertainty (ECSQARU ’03), volume 2711 of Lecture Notes in
Computer Science, pages 528–539. Springer-Verlag, 2003.

14. G. Brewka. Preferred subtheories: An extended logical framework for default rea-
soning. In N. S. Sridharan, editor, Proceedings of the Eleventh International Joint
Conference on Artificial Intelligence (IJCAI ’89), pages 1043–1048. Morgan Kauf-
mann Publishers, 1989.

15. R. E. Bryant. Graph-based algorithms for Boolean function manipulation. IEEE
Transactions on Computers, C-35(8):677–691, 1986.

Representing Paraconsistent Reasoning via Quantified Propositional Logic 115

16. T. Bylander. The computational complexity of propositional STRIPS planning.
Artificial Intelligence, 69(1–2):165–204, 1994.

17. M. Cadoli, A. Giovanardi, and M. Schaerf. An algorithm to evaluate quantified
Boolean formulae. In Proceedings of the 15th National Conference on Artificial
Intelligence (AAAI ’98), pages 262–267. AAAI Press/MIT Press, 1998.

18. M. Cadoli and M. Schaerf. On the complexity of entailment in propositional mul-
tivalued logics. Annals of Mathematics and Artificial Intelligence, 18:29–50, 1996.

19. C. Cayrol, M. Lagasquie-Schiex, and T. Schiex. Nonmonotonic reasoning: From
complexity to algorithms. Annals of Mathematics and Artificial Intelligence, 22(3–
4):207–236, 1998.

20. C. Cayrol and M.-C. Lagasquie-Schiex. Non-monotonic syntax-based entailment:
A classification of consequence relations. In C. Froidevaux and J. Kohlas, editors,
Proceedings of the Third European Conference on Symbolic and Quantitative Ap-
proaches to Reasoning and Uncertainty (ECSQARU ’95), volume 946 of Lecture
Notes in Computer Science, pages 107–114. Springer-Verlag, 1995.

21. A. Church. Introduction to Mathematical Logic, Volume I. Princeton University
Press, 1956.

22. S. Coste-Marquis and P. Marquis. Complexity results for paraconsistent inference
relations. In D. Fensel, F. Giunchiglia, D. McGuiness, and M. Williams, editors,
Proceedings of the Eighth International Conference on Principles of Knowledge
Representation and Reasoning (KR ’02), pages 61–72. Morgan Kaufmann Pub-
lishers, 2002.

23. M. Davis, G. Logemann, and D. Loveland. A machine program for theorem proving.
Communications of the ACM, 5(7):394–397, 1962.

24. M. Davis and H. Putman. A computing procedure for quantification theory. Jour-
nal of the ACM, 7(3):201–215, 1960.

25. J. Delgrande, T. Schaub, H. Tompits, and S. Woltran. On computing solutions
to belief change scenarios. In S. Benferhat and P. Besnard, editors, Proceedings
of the Sixth European Conference on Symbolic and Quantitative Approaches to
Reasoning with Uncertainty (ECSQARU ’01), volume 2143 of Lecture Notes in
Computer Science, pages 510–521. Springer-Verlag, 2001.

26. I. D’Ottaviano and N. da Costa. Sur un problème de Jaśkowski. In Comptes
Rendus de l’Académie des Sciences de Paris, volume 270, pages 1349–1353, 1970.

27. U. Egly, T. Eiter, H. Tompits, and S. Woltran. Solving advanced reasoning tasks
using quantified Boolean formulas. In Proceedings of the 17th National Conference
on Artificial Intelligence (AAAI 2000), pages 417–422. AAAI Press/MIT Press,
2000.

28. U. Egly, R. Pichler, and S. Woltran. On deciding subsumption problems. In
Proceedings of the Fifth International Symposium on the Theory and Applications
of Satisfiability Testing (SAT 2002), pages 89–97, 2002.

29. U. Egly, H. Tompits, and S. Woltran. On quantifier shifting for quantified Boolean
formulas. In Proceedings of the SAT 2002 Workshop on Theory and Applications
of Quantified Boolean Formulas (QBF 2002), pages 48–61, 2002.

30. T. Eiter and G. Gottlob. On the computational cost of disjunctive logic pro-
gramming: Propositional case. Annals of Mathematics and Artificial Intelligence,
15(3–4):289–323, 1995.

31. T. Eiter, V. Klotz, H. Tompits, and S. Woltran. Modal nonmonotonic logics revis-
ited: Efficient encodings for the basic reasoning tasks. In U. Egly and C. Fermüller,
editors, Proceedings of the Eleventh International Conference on Automated Rea-
soning with Analytic Tableaux and Related Methods (TABLEAUX 2002), volume
2381 of Lecture Notes in Computer Science, pages 100–114. Springer-Verlag, 2002.

116 P. Besnard et al.

32. R. Feldmann, B. Monien, and S. Schamberger. A distributed algorithm to evaluate
quantified Boolean formulas. In Proceedings of the 17th National Conference on
Artificial Intelligence (AAAI 2000), pages 285–290. AAAI Press/MIT Press, 2000.

33. A. Frisch. Inference without chaining. In J. McDermott, editor, Proceedings of the
Tenth International Joint Conference on Artificial Intelligence (IJCAI ’87), pages
515–519. Morgan Kaufmann Publishers, 1987.

34. M. R. Garey and D. S. Johnson. Computers and Intractability. W. H. Freeman,
1979.

35. E. Giunchiglia, M. Narizzano, and A. Tacchella. QuBE: A system for deciding
quantified Boolean formulas satisfiability. In R. Goré, A. Leitsch, and T. Nipkow,
editors, Proceedings of the First International Joint Conference on Automated Rea-
soning (IJCAR 2001), volume 2083 of Lecture Notes in Computer Science, pages
364–369. Springer-Verlag, 2001.

36. G. Gottlob. Complexity results for nonmonotonic logics. Journal of Logic and
Computation, 2(3):397–425, 1992.

37. H. Kautz, D. McAllester, and B. Selman. Encoding plans in propositional logic. In
L. Aiello, J. Doyle, and S. Shapiro, editors, Proceedings of the Fifth International
Conference on Principles of Knowledge Representation and Reasoning (KR ’96),
pages 374–384. Morgan Kaufmann Publishers, 1996.

38. H. Kautz and B. Selman. Planning as satisfiability. In B. Neumann, editor, Pro-
ceedings of the Tenth European Conference on Artificial Intelligence (ECAI ’92),
pages 359–363. John Wiley & Sons, 1992.

39. H. Kleine Büning, M. Karpinski, and A. Flögel. Resolution for quantified Boolean
formulas. Information and Computation, 117(1):12–18, 1995.

40. S. Konieczny and P. Marquis. Three-valued logics for inconsistency handling. In
S. Flesca, S. Greco, N. Leone, and G.Ianni, editors, Proceedings of the Eighth
European Conference on Logics in Artificial Intelligence (JELIA ’02), volume 2424
of Lecture Notes in Computer Science, pages 332–344. Springer-Verlag, 2002.

41. R. E. Ladner. The computational complexity of provability in systems of modal
propositional logic. SIAM Journal on Computing, 6(3):467–480, 1977.

42. S. Leśniewski. Grundzüge eines neuen System der Grundlagen der Mathematik.
Fundamenta Mathematica, 14:1–81, 1929.

43. R. Letz. Lemma and model caching in decision procedures for quantified Boolean
formulas. In U. Egly and C. Fermüller, editors, Proceedings of the Eleventh Inter-
national Conference on Automated Reasoning with Analytic Tableaux and Related
Methods (TABLEAUX 2002), volume 2381 of Lecture Notes in Computer Science,
pages 160–175. Springer-Verlag, 2002.

44. H. Levesque. A knowledge-level account of abduction. In N. S. Sridharan, editor,
Proceedings of the Eleventh International Joint Conference on Artificial Intelli-
gence (IJCAI ’89), pages 1061–1067. Morgan Kaufmann Publishers, 1989.

45. J. �Lukasiewicz and A. Tarski. Untersuchungen über den Aussagenkalkül. Comptes
Rendus Séances Société des Sciences et Lettres Varsovie, 23(Cl. III):30–50, 1930.

46. J. McCarthy. Circumscription - A form of nonmonotonic reasoning. Artificial
Intelligence, 13:27–39, 1980.

47. A. R. Meyer and L. J. Stockmeyer. The equivalence problem for regular expressions
with squaring requires exponential space. In 13th Annual Symposium on Switching
and Automata Theory, pages 125–129, 1972.

48. A. R. Meyer and L. J. Stockmeyer. Word problems requiring exponential time. In
ACM Symposium on Theory of Computing (STOC ’73), pages 1–9. ACM Press,
1973.

Representing Paraconsistent Reasoning via Quantified Propositional Logic 117

49. S. Minato. Binary Decision Diagrams and Applications for VLSI CAD. Kluwer,
1996.

50. D. Mundici. Satisfiability in many-valued sentential logic is NP-complete. Theo-
retical Computer Science, 52(1-2):145–153, 1987.

51. B. Nebel. Belief revision and default reasoning: Syntax-based approaches. In
J. Allen, R. Fikes, and E. Sandewall, editors, Proceedings of the Second Interna-
tional Conference on Principles of Knowledge Representation and Reasoning (KR
’91), pages 417–428. Morgan Kaufmann Publishers, 1991.

52. C. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.
53. D. Pearce, H. Tompits, and S. Woltran. Encodings for equilibrium logic and logic

programs with nested expressions. In P. Brazdil and A. Jorge, editors, Proceedings
of the Tenth Portuguese Conference on Artificial Intelligence (EPIA ’01), volume
2258 of Lecture Notes in Computer Science, pages 306–320. Springer-Verlag, 2001.

54. D. Plaisted, A. Biere, and Y. Zhu. A satisfiability procedure for quantified Boolean
formulae. Discrete Applied Mathematics, 130:291–328, 2003.

55. G. Priest. Logic of paradox. Journal of Philosophical Logic, 8:219–241, 1979.
56. G. Priest. Reasoning about truth. Artificial Intelligence, 39:231–244, 1989.
57. R. Reiter. A logic for default reasoning. Artificial Intelligence, 13(1–2):81–132,

1980.
58. N. Rescher. Plausible Reasoning. Van Gorcum, Amsterdam, 1976.
59. N. Rescher and R. Manor. On inference from inconsistent premises. Theory and

Decision, 1:179–219, 1970.
60. J. Rintanen. Constructing conditional plans by a theorem prover. Journal of

Artificial Intelligence Research, 10:323–352, 1999.
61. J. Rintanen. Improvements to the evaluation of quantified Boolean formulae. In

T. Dean, editor, Proceedings of the 16th International Joint Conference on Arti-
ficial Intelligence (IJCAI ’99), pages 1192–1197. Morgan Kaufmann Publishers,
1999.

62. J. A. Robinson. A machine-oriented logic based on the resolution principle. Journal
of the ACM, 12(1):23–41, 1965.

63. B. Russell. The theory of implication. American Journal of Mathematics,
28(2):159–202, 1906.

64. S. Schamberger. Ein paralleler Algorithmus zum Lösen von Quantifizierten
Boole’schen Formeln. Master’s thesis, Universität Gesamthochschule Paderborn,
2000.

65. J. Srzednicki and Z. Stachniak, editors. Lesniewski’s Systems Protothetic. Dor-
drecht, 1998.

66. R. Statman. Intuitionistic propositional logic is polynomial-space complete. The-
oretical Computer Science, 9:67–72, 1979.

67. L. J. Stockmeyer. The polynomial-time hierarchy. Theoretical Computer Science,
3(1):1–22, 1976.

68. H. Tompits. Expressing default abduction problems as quantified Boolean formu-
las. AI Communications, 16:89–105, 2003.

69. H. Turner. Polynomial-length planning spans the polynomial hierarchy. In
S. Flesca, S. Greco, N. Leone, and G. Ianni, editors, Proceedings of the Eighth Eu-
ropean Conference on Logics in Artificial Intelligence (JELIA ’02), volume 2424
of Lecture Notes in Computer Science, pages 111–124. Springer-Verlag, 2002.

70. A. N. Whitehead and B. Russell. Principia Mathematica, volume 1–3. Cambridge
University Press, 1910–13.

71. S. Woltran. Quantified Boolean Formulas – From Theory to Practice. PhD thesis,
Technische Universität Wien, Institut für Informationssysteme, 2003.

118 P. Besnard et al.

72. C. Wrathall. Complete sets and the polynomial-time hierarchy. Theoretical Com-
puter Science, 3(1):23–33, 1976.

73. L. Zhang and S. Malik. Towards a symmetric treatment of satisfaction and conflicts
in quantified Boolean formula evaluation. In P. V. Hentenryck, editor, Proceedings
of the Eighth International Conference on Principles and Practice of Constraint
Programming (CP 2002), volume 2470 of Lecture Notes in Computer Science, pages
200–215. Springer-Verlag, 2002.

	Introduction
	Quantified Propositional Logic
	Overview and Motivation
	Usability of QBFs
	Formal Postulates of Quantified Propositional Logic
	Computational Complexity
	Basic QBF-Modules

	QBFs for Paraconsistent Reasoning: Case Studies
	Reasoning from Maximal-Consistent Subsets
	Signed Systems
	Multi-Valued Approaches

	Conclusion

